

Speakers

William Moses,
Ph.D. Candidate, MIT

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 2

Vassil Vassilev,
Research Software Engineer,

Princeton/CERN

What	is	this	talk	about?

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 3

Outline

• A	warmup
• Measuring	the	rate	of	change

• Introduction
• Computing	derivatives.	Approaches
• A	gentle	introduction	to	AD.	Chain	rule
• Applications	using	AD

• Differentiable	Programming
• Deep	learning	&	AD
• Backpropagation
• Existing	tools	&	Frameworks

• Implementation
• Discuss	possible	implementation	approaches
• Showcase	tools	built	as	part	of	the	Clang/LLVM	compiler	toolchain.
• Explain	how	such	tools	work	and	what	are	the	benefits

• Briefly	outline	standardization	efforts	(as	per	https://wg21.link/P2072)

• Conclusion

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 4

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 5

How	fast	he	ran?

How	fast	he	ran?	What	does	that	even	mean?

Displacement	=	velocity	*	time

100/9.58	=	10.44	m/s	=>	37.58	km/h	on	average

• Did	he	accelerate	until	the	end?
• When	did	he	slow	down?

• What	was	his	top	speed?

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 6

Measuring	the	rate	of	change

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 7

Bolt	(m) 2008	(s) 2009	(s)

0 0 0

10 1.83 1.89

20 2.87 2.88

30 3.78 3.78

40 4.65 4.64

50 5.5 5.47

60 6.32 6.29

70 7.14 7.1

80 7.96 7.92

90 8.79 8.75

100 9.69 9.58

Δ"

Δ#

Plot	credits:	A.	Penev

Data from SportEndurance.com

To	find the	time	and	velocity	at	

some	interval	we	could	calculate	the	

gradient	graph	at	different	times.

$ =
∆#

∆"

For	example	the	velocity	of	Bolt	

from	the	50th to	the	80th meter	was:

$ =
∆#

∆"
=

80 − 50

7.96 − 5.5
= 12.191/3

Could	he	do	better	in	2009?

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 8

Bolt,	100m	dash,	Beijing	Olympics,	2008,	source	quantamagazine.org

Derivatives:	measure	the	rate	of	change

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 9

A	derivative	measures	the	rate	of	a	function’s	output	value	wrt a	change	in	its	input:

accelerationvelocity

f 5 x = lim
:→<

= > + ℎ − =(>)

ℎ
Plot	credits:	A.	Penev

The	longer	the	distance	the	more	parameters

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 10

Schickhofer,	Lukas,	and	Henry	Hanson.	"Aerodynamic	effects	and	performance	
improvements	of	running	in	drafting	formations."	Journal	of	Biomechanics 122	(2021):	
110457.

Tactics	are	skills	required	in	a	

competition	that	allow	a	player	or

team	to	effectively	use	their	

talent	and	skill	to	the	best

possible	advantage.	Usually	

means	to	empirically	

develop	an	intuition	how	to	win

and	apply	it.

Building	a	reference	trajectory

with	a	goal	of	maximizing	

performance (output)	while

minimizing	the	set	of	inputs.

Thus,	we	need	to	know	how	each

input	parameter	affects	the

output.

Gradient	Descent

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 11

A	gradient	is	the	vector	of	values	of	the	function;	each	entry	

is	the	output	of	the	function’s	derivative	wrt a	parameter…

The	gradient	vector	can	be	interpreted	as	the	"direction	and	

rate	of	fastest	increase"

C= #1, … , #F =

G=

#H
(#1, … , #F)

.

.

.
G=

#F
(#1, … , #F)

Plot	credits:	https://ruder.io/optimizing-gradient-descent/

Computing	Derivatives

12

Computing	Derivatives

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 13

Manual
• Error	prone

Numerical	Differentiation	(ND)
• Precision	errors

• High	computational	complexity

• Higher	order	problem	(formula	approximated	by	missing	higher	order	terms)

Symbolic	Differentiation	(SD)
• Only	works	on	single	mathematical	expressions	(no	control	flow)

• May	require	transcribing	result	back	into	code

Algorithmic	or	Automatic	Differentiation	(AD)
• Automatically	generate	a	C++	program	to	compute	the	derivative	of	a	given	function

Numerical	Differentiation

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 14

• The	choice	of	h is	problem-dependent.

• Too	big	step	hmakes	the	approximation	too
poor

• Too	small	hmakes	the	floating	point	
round-off	error	too	big

• The	computational	complexity	is	O(n),	where	n	is	
the	number	of	parameters	– for	a	function	with	
100	parameters	we	need	101	evaluations

I=(#)

I#
≈
= # − = # + ℎ

ℎ

Symbolic	Differentiation

• Limited	to	closed	form	expressions

• Requires	a	symbolic	processing	system	(eg
Mathematica,	Mapple)	and	transcribing	back	
the	algorithm

• Suffers	from	expression	swell	(subexpression	
accumulation),	especially	challenging	when	
going	to	higher	order	derivatives

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 15

// Supports
double pow3(double x) {
return x * x * x;

}
// Does not support
double pow3_(double x) {
if (x == 0) return 0;
return x * x * x;

}

Automatic	Differentiation

”[AD]	is	a	set	of	techniques	to	evaluate	the	derivative	of	a	function	specified	by	a	
computer	program.	AD	exploits	the	fact	that	every	computer	program,	no	matter	
how	complicated,	executes	a	sequence	of	elementary	arithmetic	operations	
(addition,	subtraction,	multiplication,	division,	etc.)	and	elementary	functions	
(exp,	log,	sin,	cos,	etc.).”	[Wikipedia]

Known	as	algorithmic	differentiation,	autodiff,	algodiff,	computational	
differentiation.

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 16

Automatic	and	Symbolic	Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

I

I#
KL

MM
MN

= KOPL
MM
MN

PLM
MN
PLM

N
PLN

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
double result = x;
for (unsigned i = 0; i < 5; i++)
result = std::exp(result);

return result;
}

= # = KL
MM
MN Symbolic	via	Wolfram	Alpha

Handcode Handcode

AD

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 17

Figure	out	the
analytical	fn

AD.	Chain	Rule

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 18

IQ

I#
=
IQ

IR
.
IR

I#

Intuitively,	the	chain	rule	states	that	knowing	the	instantaneous	rate	of	change	of	
z relative	to	y and	that	of	y relative	to	x allows	one	to	calculate	the	instantaneous	
rate	of	change	of	z relative	to	x as	the	product	of	the	two	rates	of	change.	

“if	a	car	travels	twice	as	fast	as	a	bicycle	and	the	bicycle	is	four	times	as	fast	as	a	
walking	man,	then	the	car	travels	2	× 4	=	8	times	as	fast	as	the	man.”	G.	Simmons

AD.	Algorithm	Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy

IR

I#
IQ

IR

In	the	computational	graph	each	

node	is	a	variable	and	each	edge	is	

derivatives	between	adjacent	edges

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 19

We	recursively	apply	the	rules	until	we	encounter	an	elementary	function	such	as	addition,	

multiplication,	division,	sin,	cos	or	exp.

AD.	Chain	Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

x0

zy

x1

w0

w1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

GS0

G#0
=
GS0

GQ

GQ

GR

GR

G#0

GS0

G#1
=
GS0

GQ

GQ

GR

GR

G#1

GS1

G#0
=
GS1

GQ

GQ

GR

GR

G#0

GS1

G#1
=
GS1

GQ

GQ

GR

GR

G#1
26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 20

AD	step-by-step.	Forward	Mode

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0

w1

x0

x1

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 21

AD	step-by-step.	Reverse	Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy

w0

w1

x0

x1

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 22

AD	Control	Flow

• Control	Flow	and	
Recursion	fall	naturally	in	
forward	mode.

• Extra	work	is	required	for	
reverse	mode	in	reverting	
the	loop	and	storing	the	
intermediaries.

double f_reverse (double x) {
double result = x;
std::stack<double> results;
for (unsigned i = 0; i < 5; i++) {
results.push(result);
result = std::exp(result);

}
double d_result = 1;
for (unsigned i = 5; i; i--) {
d_result *= std::exp(results.top());
results.pop();

}
return d_result;

}

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 23

AD.	Cheap	Gradient	Principle

• The	computational	graph	has	common	subpaths which	can	be	precomputed

• If	a	function	has	a	single	input	parameter,	no	mater	how	many	output	
parameters,	forward	mode	AD	generates	a	derivative that	has	the	same	time	
complexity	as	the	original	function

• More	importantly,	if	a	function	has	a	single	output	parameter,	no	matter	how	
many	input parameters,	reverse	mode	AD	generates	derivative with	the	same	
time	complexity	as	the	original	function.

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 24

Uses	of	AD	outside	of	Deep	Learning

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 25

Gradient	of	the	Sonic	Boom	objective	function	

on	the	skin	of	the	plane,	CFD,	Laurent	Hascoët

et	al.

Intensity	Modulated	Radiation	

Therapy,	Biomedicine,	Kyung-Wook

Jee et	al

Sensitivities	of	a	Global

Sea-Ice	Model,	Climate,	Jong	G.	Kim	et	al

Differentiable	Programming

26

Deep	Learning	&	Automatic	Differentiation

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 27

Imagined	by	GAN,	

ThisPersonDoesNotExist.com

Medical	Imaging,	CNN,	A.	Esteva et	al,	A	guide	to	deep	learning	in	healthcare

Image	colorization Tesla	Autopilot,	tesla.com

Speech	Recognition

Backpropagation

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 28

Input layer HL 1 Output layerHL 2

are inputs, input weights, activation
function and learning rate of the
neuron

Forward pass – make a prediction
Calculate Loss

Backpropagation – adjust the weights to minimize loss

The error propagates
back, through updates of
the subtracted gradient
ratio from the weights.

Training pattern is fed,
forward generating
corresponding output

Error at output, the error
between observed and
desired state. Computed
from the output y and seen
desired output t.

#H

#T

>H

>T

>U

VT

VH
"

>H
(T)

Backpropagation

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 29

#H
(<)

W

SH,H
(H)

#T
(<)

QH
(H)

QT
(H)

QH
(T)

QU
(H)

QT
(T)

SH,T
(H)

SH,U
(H)

ST,U
(H)

ST,T
(H)ST,H

(H)

SH,H
(T)

SH,T
(T)

ST,H
(T)

ST,T
(T)

SU,H
(T)

SU,T
(T)

G

G

G

G

G

G
+
G

G

G

G

G

G

G

G

G

G

>H
(H)

>T
(H)

>U
(H)

>H
(T)

>T
(T)

KH
(U)

KT
(U)

G

G
=

QH
(T)

>H
(H) QH

(T)

>T
(T)QT

(T)QT
(T)

>H
(H)>H
(H)QH

(H)SH,H
(H)

Differentiable	Programming

“A	programming	paradigm	in	which	a	numeric	computer	program	can	be	
differentiated	throughout	via	automatic	differentiation.	This	allows	for	gradient	
based	optimization	of	parameters	in	the	program,	often	via	gradient	descent.”	
[Wikipedia]

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 30

• Deep	learning	drives	recent	advancements	in	automatic	differentiation

• AD	is	useful	also	in	bayesian inference,	uncertainty	quantification,	
modeling,	simulation

• Several	programming	languages	and	frameworks	have	enabled	the	
differential	programming	paradigm	by	adding	support	for	AD.

• Swift,	Kotlin,	and	Julia	have	made	AD	a	first-class	citizen.

Automatic	Differentiation	&	C++

31

out

Interoperable	Machine	Learning

• Limited	support	for	C++	automatic	
differentiation	hinders	the	use	of	
C++	within machine	learning

• Cannot	easily	use	the	vast	set	of	
existing	C++	codebases	in	ML	
applications

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 32

“[The	key	challenge	of	scientific	ML	is	that]	if	there	is just	one	part	of	your	

loss	function	that	isn’t	AD-compatible,	then	the	whole	network	won’t	

train.”	-Rackauckas

Python

C++

Swift

in

C++	Automatic	Differentiation	Wish-List

• Fast
• Compilation	Time	(ideally	not	JIT)

• Execution	Time

• Works	on	existing	code
• Doesn't	require	rewriting	user	code

• Supports	(most)	C++

• Easily	Maintainable
• Minimal	impact	outside	of	AD	(e.g.	no	rewrite	of	STL)

• Keeps	up	with	evolving	standards

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 33

Existing	AD	Approaches	(1/3)

• Differentiable	DSL	(TensorFlow,	PyTorch,	DiffTaichi,	Halide)
• Provide	a	new	language	designed	to	be	differentiated

• Requires	rewriting	everything	in	the	DSL	and	the	DSL	must	support	all	
operations	in	original	code

• Fast	if	DSL	matches	original	code	well

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 34

#include "tensorflow/core/public/session.h"

GraphDef graph_def;
session->Create(graph_def);
...
session->Run(inputs,{"output_class/Softmax:0"}, {}, &outputs);

Existing	AD	Approaches (2/3)

• Operator	overloading	(Adept	[C++],	JAX	[Python])
• Provide	differentiable	versions	of	existing	language	constructs

• May	require	writing	to	use	non-standard	utilities

• Often	dynamic:	storing	instructions/values	to	later	be	interpreted

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 35

template<typename T> square(T val) { return val * val; }

adept::Stack stack;
adept::adouble inp = 3.14;
adept::adouble out(square(inp));
out.set_gradient(3.14);

double derivative = out.get_gradient(3.14);

Existing	AD	Approaches (3/3)

• Source	rewriting
• Statically	analyze	program	to	produce	a	new	gradient	function	in	
the	source	language

• Re-implement	parsing	and	semantics (hard	for	C++	&	must keep	
up	with standard)

• Requires	all	code	to	be	available	ahead	of	time

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 36

double square(double val) { return val * val; }

double grad_square(double val) { return 2 * val; }

tapenade -b -o out.c -head "square(val)/(out)" square.c

Idea:	Compiler-Based	AD!

• Want	the	no	user-rewriting,	speed,	and	low	STL-rewriting	impact	of	
source	AD

• Do	not	want	the	extra	maintenance	burden

• Since	the	compiler	already	implements	parsing,	semantic	analysis,	
etc, we	can	use	the	compiler	to	perform	source-based	AD	without	
maintaining	a	second	parser!

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 37

Two	Case	Studies	of	Compiler-Based	AD

38

Implementation	of	AD	in	Clang/LLVM

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 39

Optimize

Lower CodeGenLower
Clang
AST

Implementation	of	AD	in	Clang/LLVM

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 40

Optimize

Lower CodeGenLower
Clang
AST

Clad Enzyme

Case	Study	1:	Clad	– AD	of	Clang	AST

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 41

double square(double val) {
return val * val;

}

FunctionDecl square double (double)
|-ParmVarDecl val double
`-CompoundStmt
`-ReturnStmt

`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double ParmVar val

FunctionDecl square_darg0 double (double)
|-ParmVarDecl val double
`-CompoundStmt
|-DeclStmt
| `-VarDecl d_val double
| `-ImplicitCastExpr double <IntegralToFloating>
| `-IntegerLiteral int 1
`-ReturnStmt
`-BinaryOperator double +
|-BinaryOperator double *
| |-ImplicitCastExpr double <LValueToRValue>
| | `-DeclRefExpr double Var d_val
| `-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-BinaryOperator double *

|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double lvalue Var d_val

Clad

Clang

Case	Study	1:	Clad	– AD	of	Clang	AST

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 42

#include "clad/Differentiator/Differentiator.h"
double square(double val) {

return val * val;
}

int main() {
auto dfdx = clad::differentiate(pow2, 0);

double res = dfdx.execute(1);

// OR
auto dfdxFnPtr = dfdx.getFunctionPtr();
dfdx = dfdxFnPtr(2);

printf("%s\n", dfdx.getCode());

...
}

double square_darg0(double val) {
double d_val = 1;
return d_val * val + val * d_val;

}

Clad	Key	Insights

• Works	on	the	compiler	frontend	level	and	uses	the	tree-rebuilding	
approach	like	the	C++	template	instantiator

• Can	produce	valid	C++	source	code

https://clad.readthedocs.io	/ https://github.com/vgvassilev/clad

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 43

Existing	Automatic	Differentiation Pipelines

AD
Optimize

Lower
AD

AD

AD

CodeGen

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 44

Vector	Normalization

4

5

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n^2)
void normalize(double[] __restrict__ out,
const double[] __restrict__ in) {

for (int i=0; i<N; i++) {
out[i] = in[i] / magnitude(in);

}
}

X YT

Vector	Normalization:	LICM

4

6

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n)
void normalize(double[] __restrict__ out,
const double[] __restrict__ in) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
}

X Y

Vector	Normalization:	LICM	then	AD

4

7

void grad_normalize(double[] out, double[] dout,
double[] in, double[] din) {

double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
double d_res = 0;
for (int i= N; i>=0; i--) {
dres += -in[i]*in[i]/res * dout[i];
din[i] += dout[i]/res;

}
grad_magnitude(in, din, n, dres);

}

X Y

Vector	Normalization:	AD,	then	LICM

4

8

void grad_normalize(double[] out, double[] dout,
double[] in, double[] din) {

double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}	

for (int i= N; i>=0; i--) {
double dres = -in[i]*in[i]/res * dout[i];
din[i] += dout[i]/res;
grad_magnitude(in, din, n, dres);

}
}

X YT

Can’t LICM as uses loop-local variable dres

Differentiating	after	optimization	can	create	asymptotically	faster gradients!

X YT X Y X Y

X YTX YT X YT

49

Optimization	&	Automatic	Differentiation

OptimizeAD

for i=0..n {
out[i] /= mag(in)

}

for i=0..n {
out[i] /= mag(in)

}

res = mag(in)
for i=0..n {
out[i] /= res

}

d_res = 0.0
for i=n..0 {
d_res += d_out[i]…

}
∇mag(d_in, d_res)

for i=n..0 {
d_res = d_out[i]…
∇mag(d_in, d_res)

}

for i=n..0 {
d_res = d_out[i]…
∇mag(d_in, d_res)

}

Optimize AD

Optimize

Performing	AD	at	low-level	lets	us	work	on	optimized code!
Optimize

Lower Enzyme CodeGen

[MC20]	Moses,	Churavy.		Instead	of	Rewriting	Foreign	Code	for	Machine	Learning,	Automatically	Synthesize	Fast	Gradients.		NeurIPS,	2020.

Enzyme	Approach	[MC20]

50

Case	Study	2:	Enzyme	– AD	of	LLVM	IR

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 51

double square(double val) {
return val * val;

}

double __enzyme_autodiff(void*, ...);

double grad_square(double val) {
return __enzyme_autodiff((void*)square, val);

}

define double @square(double %val) {
%sq = fmul double %val, %val
ret double %sq

}

Enzyme
define double @grad_square(double %val) {
%res = fadd double %val, %val
ret double %res

}

Clang

Case	Study	2:	Enzyme	– AD	of	LLVM	IR

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 52

double square(double val) {
return val * val;

}

double __enzyme_autodiff(void*, ...);

double grad_square(double val) {
return __enzyme_autodiff((void*)square, val);

}

define double @square(double %val) {
%sq = fmul double %val, %val
ret double %sq

}

Enzyme
define double @grad_square(double %val) {
%res = fadd double %val, %val
ret double %res

}

https://bit.ly/3aNP6bB

Clang

Try	Online	On	The	Enzyme

Compiler	Explorer!

Enzyme	Evaluation

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme						.

Tapenade

Adept

Compared against Enzyme without preprocessing optimizations and two fastest AD tools

-O2

-O2-O2

-O2-O2

-O2 Enzyme						. -O2

53

Speedup	of	Enzyme	
H
ig
h
e
r	
is
	B
e
tt
e
r

Enzyme	is	4.2x faster than	Reference!
54

Key								Enzyme	Insights

• Running	AD	after/alongside	optimization	enables	substantial	
speedups,	including	4.2x	on	a	suite	of	ML/scientific	codes

• Enzyme	achieves	state-of-the	art	performance

• Enzyme	is	the first	AD	tool	to	differentiate	arbitrary	GPU	kernels	
(including	AMD	and	NVIDIA)	[MCPH+21]

• Enzyme	has	support	for	generic	forms	of	parallelism	including	
OpenMP,	MPI,	and	other	frameworks	that	build	upon	them	like	
Kokkos and	RAJA

https://enzyme.mit.edu /	https://github.com/wsmoses/Enzyme

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 55

[MCPH+21]	Moses	et	al. Reverse-Mode	Automatic	Differentiation	and	Optimization	of	GPU	Kernels	via	Enzyme. To	appear	at	SC,	2021.

Overall	AD	Compiler	Insights

• Existing	code	does	not	need	to	be	rewritten	to	be	differentiated.
• Being	within	the	compiler	AD	tools	to	continue	function	as	the	
frontend	languages	&	standards	evolve.

• Has	access	to	source	locations	and	can	issue	precise	diagnostics
• Can	be	successfully	implemented	at	either	a	high	or	low	level

…but	this	requires	using	a	conformant	compiler

=>	Can	we	standardize	this?

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 56

Standardization	Efforts

• We	believe	first	class	support	of	differentiable	programming	paradigm	is	an	
important	feature	which	will	become	central	for	various	data	science,	research	
and	industry	communities

• We	believe	that	compiler-aided	AD	is	the	most	viable	path	forward	to	
supporting	high-performance

• We	have	produced	an	overview	paper	“Differentiable	programming	
for	C++”	https://wg21.link/P2072

• We	have	solicited	feedback	from	the	ML	study	group	of	isocpp (aka	SG19)	but	
also	from	various	other	parties

• We	are	keen	on	turning	the	overview	paper	into	a	concrete	plan!

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 57

Conclusion

26-Oct-2021 V.	Vassilev,	W.	Moses	- Differentiable	Programming	in	C++ 58

• Differentiable	Programming	is	a	new	and	promising	programming	paradigm	
which	relies	on	well	developed	theory	and	technology

• The	presented	tools	are	being	developed	and	integrated	in	various	fields
• The	standardization	efforts	are	ramping	up	and	we	hope	to	solicit	support	after	
this	talk

Thank	you!

59

Q	&	A

60

