~

ﬂ

BERKELEY LAB

freeeee

N

U.S. DEPARTMENT OF

cppyy: Yet another Python — C++ binder?!

* Yes, but it has its niche: bindings are runtime
— Python is all runtime, so runtime is more natural
— C++-side runtime-ness is provided by Cling

« Very complete feature-set (not just “C with classes”)
« Good performance on CPython; great with PyPy*

pip: https://pypi.org/project/cppyy/ For HEP users: copyy in ROOT is

)) an old fork. It won't run all the
cgnda. https.//apaconda.orq/conda-forqe/cppvy examples here, doesn’t work with
git: https://github.com/wlav/cppyy PyPy, and has worse performance.
docs: https://cppyy.readthedocs.io/en/latest/

(%) PyPy support lags CPython

7%, U.S. DEPARTMENT OF

https://pypi.org/project/cppyy/
https://anaconda.org/conda-forge/cppyy
https://github.com/wlav/cppyy
https://cppyy.readthedocs.io/en/latest/

Examples of Runtime Behavior

@ ENERGY

Runtime Template Instantiations

« Cling instantiates templates at runtime
— No pre-instantiation/compilation necessary
— Prevent duplication of standard classes (e.g. STL)
— No combinatorial explosion (esp. with numeric types)
— Support for templates of user classes

@ ENERGY

Runtime Template Instantiations

struct MyClass {
MyClass (int i) fData (i) {}
virtual ~MyClass() {}
virtual int add(int i) {
return fData + 1i;

}

int fData;

}:

>>> import cppyy.gbl as CC
>>> v o= |\
CC.std.vector[CC.MyClass] ()

>>> for i in range(10):
v.emplace back(i)

>>> len(v)
10

>>> for m in v:
print (m.fData, end=' ')

01234567829
>>>

rrrrrrrrr

BERKELEY LAB

4%, U.S. DEPARTMENT OF

Runtime Cross-Inheritance

* Cling’s JIT compiles generated trampolines

— All proper C++ base classes can be inherited from
* No need to select a subset of likely base classes

— Only trampoline methods actually overridden
— No overhead added to bound base class
— Memory managed (copy, move, assign, destruct)

@ ENERGY

Runtime Cross-Inheritance

struct MyClass {
MyClass (int i) fData (i) {}
virtual ~MyClass() {}
virtual int add(int i) {
return fData + 1i;
}

int fData;

rrrrrrrrr

BERKELEY LAB

>>> import cppyy.gbl as CC
>>> class PyMyClass (CC.MyClass) :
def add(self, i):

return self.fData + 2*1i

>>> m = PyMyClass (1)
>>> CC.callb(m, 2)
5

>>>

4%, U.S. DEPARTMENT OF

The obvious next step ...

* Cross-inheritance allows Python classes in C++
— Uniquely identifiable, memory managed

« C++ classes can be used as template argument
« Emergent property: Python classes in templates!

@ ENERGY

Thus obvious next step ...

struct MyClass {
MyClass (int i) : fData(i) {}
virtual ~MyClass() {}
virtual int add(int i) {
return fData + 1i;
}

int fData;

}:

rrrrrrr

BERKELEY LAB

>>>
>>>

>>>

>>>

>>>
80

>>>

import cppyy.gbl as CC
class PyMyClass (CC.MyClass):
def init (self, d, extra):

super (PyMyClass, self). init (d)

self.extra = extra
def add(self, 1i):
return self.fData + \
self.extra + 2*i

v =\
CC.std.vector [PyMyClass] ()

v.push back (PyMyClass (4, 42))

v.back () .add(17)

4%, U.S. DEPARTMENT OF

Runtime Automatic Fallbacks

« Cling instantiates templates at runtime
« But Python types do no map uniquely, example:

Python C++

type int int8 t, uint8 t, short,
unsigned short, int,
unsigned int, long,
unsigned long, long long,
unsigned long long,
inté64 t, uinte64 t, ..

 Solution: automatically fallback as needed

4%, U.S. DEPARTMENT OF

Runtime Automatic Fallbacks

template<typename T>
T passT(T t) {
return t;

>>> import cppyy.gbl as CC

>>> type (1)

<class 'int'>

>>> CC.passT (1)

1

>>> CC.passT. doc

'int ::passT(int t)~’

>>> type(2*%*64-1)

<class 'int'>

>>> CC.passT(2*%*64-1)

18446744073709551615

>>> CC.passT. doc

'unsigned long long ::passT(
unsigned long long t)'

>>>

rrrrrrrrr

BERKELEY LAB

4%, U.S. DEPARTMENT OF

Runtime Callbacks

* Cling’s JIT compiles generated wrappers

— Type checked and memory managed
» Errors (exceptions) can trace through both Python and C++
« Python manages lifetime, C++ manages resources
— Note: manage manually if C++ stores the function ptr
— Supports C++ function pointers and std: : function

* Python can pass any callable
— Functions, lambda’s, objects implementing call

— Bound C++ functions and methods (w/o wrapper)

7%, U.S. DEPARTMENT OF

Runtime Callbacks

typedef int (*P) (int);

int callPtr(P £, int i) {
return f£(i);

}

typedef std::function<int(int)> F;

int callFun(const F& £, int i) {
return f£(i);

}

rrrrrrrrr

BERKELEY LAB

>>> import cppyy.gbl as CC
>>> def f(val):

. return 2*val

>>> CC.callPtr (£, 2)

>>> CC.callFun(f, 3)

>>> CC.callPtr(lambda i: 5*i, 4)

>>> CC.callFun(lambda i: 6*i, 4)

13- ‘v ENERGY

Runtime Templated Callbacks

* Modern Python3 supports “annotations”
— Very commonly used in any modern Python project

— Type information used by IDEs, static checkers, etc.
* Unused by (and mostly irrelevant to) the interpreter

— Dictionary of (strings of) argument and return types
« Strings are necessary for compound C++ types

« Annotated functions can instantiate templates
— Incl. bound C++ functions (by definition “annotated”)

7%, U.S. DEPARTMENT OF

Runtime Templated Callbacks

template<typename R,
typename... U,
typename... A>
R callT(R(*f) (U...), A&&... a) {
return f(a...);
}

>>> import cppyy.gbl as CC
>>> def f(a: 'int') -> 'double':
return 3.1415%*a

>>> CC.callT (£, 2)
6.283

>>> def f(a: 'int', b: 'int') \
-> 'int':

return 3*a*b

>>> CC.callT(f, 6, 7)
126
>>>

rrrrrrrrr

BERKELEY LAB

4%, U.S. DEPARTMENT OF

Runtime Auto-downcast and Object Identity

 Always cast to the most derived C++ type
— Involves a fake base and retrieving C++ RTTI
— Custom RTTIl implementation on MS Windows 64b

 Preserve identity Python proxy < C++ instance

— Eases resource management / prevents dangling ptrs

— Guarantees equal hashes for dictionary lookups
Alternative: specialize std: :hash or hash

— Enables cctor and assignment of cross-derived classes

7%, U.S. DEPARTMENT OF

Runtime Auto-downcast and Object Identity

struct Base { >>> import cppyy.gbl as CC
virtual ~Base() {} >>> d = CC.Derived()
}; >>> b = CC.passB(d)
>>> type(b) == CC.Derived
struct Derived : public Base {}; True
>>> d is b
Base* passB(Base* b) { True
return b; >>>

}

o1 17 O ENERGY

BERKELEY LAB

Runtime Exceptions

* Map exceptions derived from std: :exception
— Python exceptions are not object instances

— Python exception classes do not match C++ ones

* Preserves C++ exception types

— Allows crossing multiple language layers
» Provides trace showing full call stack

Note: can't mix compiled & JITed on all platforms
» To be fixed in a future version of Clang?

7%, U.S. DEPARTMENT OF

Runtime Exceptions

class MyException : >>> import cppyy.gbl as CC
public std::exception { >>> try:
public: «en CC.throw error()
const char* what() const throw() { ... except CC.MyException as e:
return "C++ failed"; “ee print (e)
} ...
}i void ::throw error() =>
MyException: C++ failed
void throw error() { >>>

throw MyException{};

}

o1 19- O ENERGY

BERKELEY LAB

Runtime Unicode

« Python unicode encapsulates code points + codec
— Defaults to UTF-8 (with BOM check)

« C++ isjust all over the place, for example:

— Byte-encoded w/o codec (e.g. std: : string)

— Code points w/o codec (e.g. std: :ul6string)

— Wide char types w/ assumed codec (platform-specific)
e Python's type str!=C++'s std::string

— Developers still want interchangeable use by default ...

7%, U.S. DEPARTMENT OF

Runtime Unicode

template<class T> >>> import cppyy.gbl as CC
std::string to str(const T& chars) { >>> CC.utf8 chinese ()
char buf[12]; int n = 0; 3t i
for (auto c¢ : chars) .
>>> CC.gbk chinese()
buf [n++] = char(c); . \ '
return std::string(buf, n-1); b'\xd6\xd0\xce\xc4
} >>> CC.gbk chinese() .decode('gbk!')
X
std::string utf8 chinese() { >>>
auto chars = {0xe4, 0xb8, 0xad,

Oxe6, 0x96, 0x87, 0};
return to str(chars);
}
std::string gbk chinese() {
auto chars = {0xd6, 0xd0, Oxce,
Oxc4, 0};
return to str(chars);

}

=
,,,,,,, -21 - .4 ENERGY

BERKELEY LAB

And much more, not directly runtime ...

 Classes, functions, (static) methods, operators,
iterators, enums, single/multiple inheritance,
shared/unique_ptr, STL pythonizations, ...

* Low-level C support (memory, arrays, ptr math, ...)
« Debug support (e.g. segfault ->Python exception)

« Customize with pythonizations, “freeze” binary
distributions, cmake fragments for projects, ...

« See: https://cppyy.readthedocs.io/en/latest/

7%, U.S. DEPARTMENT OF

https://cppyy.readthedocs.io/en/latest/

Yes, okay, runtime is great ... but
what about performance?

@ ENERGY

Performance Compared to Static Approaches

* No fundamental CPU performance difference

Note carefully that everything in Python is runtime:
compile-time just means that the bindings recipe is
compiled, not the actual bindings themselves!

« But heavy Cling/LLVM dependency:
— ~25MB download cost; ~100MB memory overhead
— Complex installation (and worse build)

@ ENERGY

Basic Performance Tests

void empty call() {} System:
Ubuntu 20.04.2 LTS
class Overload { AMD EPYC 7702P 64-Core CPU

public:
double add(int a, int b); 1TB of RAM

double add(short a);

double add(long a); Setup:

double add(int a, int b, int c); gcc (system)
double add(double a); pytest (pypi)

double add(float a); benchmark: (pypi)
double add(int a);

}:

Comparison:

// benchmark example: CPP¥Y (PYP%)
Overload obj; pybindll (pypi)

for (size t i=0; i < N; ++i) swig (system)
Obj .add((double) i) ; PYPY-C . (system)

=
! & "‘ U.S. DEPARTMENT OF
,,,,,,, -25- .9 ENERGY

BERKELEY LAB

Basic Performance Test: empty call

C++ (Cling w/ -O2; out-of-line) 1.5
cppyy / pypy-c 16
swig (builtin) 27
cppyy / CPython 68
pybind11 68
swig (default) 104

= Empty global function call is a pure overhead measure (zero work)
= pypy-c slower than C++ b/c of global interpreter lock (GIL) release
= "Builtin” swig trades functionality for speed

= There is no obvious benefit to “static” over runtime bindings (%) lower is better

7%, U.S. DEPARTMENT OF

Basic Performance Test: overload

C++ (Cling w/ -O2; out-of-line) 1.8E-6
cppyy / pypy-c 0.50
cppyy / CPython 1.25
swig (builtin) 1.29
swig (default) 4.23
pybind11 6.97

= C++ overload is resolved at compile time, not based on dynamic type
= Largest overhead: Python instance type checking (avoidable, but clumsy)
= There is no obvious benefit to “static” over runtime bindings

(%) lower is better

7%, U.S. DEPARTMENT OF

Implementation: Bird’s Eye View

@ ENERGY

Implementation

» Python offers hooks for C++ entity lookups, e.g.:

— meta-classes for class creation
— getattr forresolving attributes

— getitem / call fortemplate instantations
* The hooks call into Cling for name lookup
— All initial lookups are always string-based

 Access provided by address or through wrappers

— Wrappers are C++ code to easily cover esoteric uses
— Generalized interfaces to simplify downstream code

7%, U.S. DEPARTMENT OF

Implementation Flow: Lookup Example

cppyy.gbl .MyClass — .“MyCIass” . _9_et:31ttr_ . “MyCIass” _, Create Proxy
| is unknown to Cling’s lookup is known MyClass
I
“MyClass” “MyClass”
is known is unknown
return raise return
MyClass Exception MyClass

Templates additionally use either getitem (explicit instantiation) or call (implicit).
Proxy creation calls into Cling for reflection information; wrappers are created on first use.

@ ENERGY

Implementation Flow: Call Example

call
m = MyClass() “‘Calc’is _, . =
MyClass.Calc (42) a template create explicit
template
N\ L
“Calc” ,__-A\-—""" Calc<..> generate call
is unknown is known wrapper Calc
raise Calcis return
Exception a function result

Wrappers of generated (and JITted) C++ are used to easily cover a range of C++isms, such
as linkage of inline functions, overloaded operator new, default arguments, operator

lookup, etc., etc. For simple cases in PyPy, direct FFIl is used, for improved performance.

@ ENERGY

Conclusions

Current Limitations

« Complex and heavy Cling/LLVM dependency

« All C++ code enters single, global, translation unit
— Significant slowdown for templates (Eigen, PCL, ...)

* PyPy/cppyy is significantly behind CPython/cppyy
* No MS Windows port for conda
» Significant Clang JIT limitations on MS Windows

7%, U.S. DEPARTMENT OF

Current Focus

« Add GPU (cuda) support to cppyy

* Bring PyPy / cppyy on par with CPython / cppyy
 Simplify installation / distribution

@ ENERGY

Conclusion

Runtime Python-C++ bindings are much more
functional than similar static approaches

(and without loss in performance*)

(%) memory overhead is higher

@ ENERGY

@ ENERGY

