
Scaling RooFit's Automatic Differentiation
Capabilities to CMS Combine

Jonas Rembser*, David Lange+, Vassil Vassilev+

{ *CERN, +Princeton, compiler-research.org }

This work is partially supported by National Science Foundation under Grant OAC-2311471

https://compiler-research.org/

Motivation

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 2

𝐿 𝑛, Ԧ𝑎ห Ԧ𝜂, Ԧ𝜒 = ෑ

𝑐∈𝑢𝑛𝑏𝑖𝑛𝑛𝑒𝑑 𝑐ℎ

ෑ

𝑖∈𝑜𝑏𝑠

𝑓𝑐 Ԧ𝑥𝑐𝑖ห Ԧ𝜂, Ԧ𝜒

𝑓𝑐׬ Ԧ𝑥𝑐𝑖ห Ԧ𝜂, Ԧ𝜒 𝑑 Ԧ𝑥𝑐
∙

ෑ

𝑐∈𝑏𝑖𝑛𝑛𝑒𝑑 𝑐ℎ(𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙)

ෑ

𝑏∈𝑜𝑏𝑠

𝑃𝑜𝑖𝑠 𝑛𝑐𝑏ȁ𝜈 Ԧ𝜂, Ԧ𝜒 ∙ෑ

𝜒∈𝜒

𝑐𝜒 𝑎𝜒ȁ𝜒

𝑛 ∶ 𝑑𝑎𝑡𝑎, Ԧ𝑎 ∶ 𝑎𝑢𝑥𝑖𝑙𝑎𝑟𝑦 𝑑𝑎𝑡𝑎, Ԧ𝜂 ∶ 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, Ԧ𝜒 ∶ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

Numerical and
analytic integrals

Likelihoods are central for High Energy Physics

CMS Combine Paper https://arxiv.org/pdf/2404.06614

https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 3

𝑔1 x =
1

𝜎1 2𝜋
𝑒
−
1
2
𝑥−𝜇
𝜎1

2

𝑔2 x =
1

𝜎2 2𝜋
𝑒
−
1
2
𝑥−𝜇
𝜎2

2

𝑃𝑏𝑘𝑔 x =
1 + 𝑎0 ∗ 𝑇1(𝑥) + 𝑎1 ∗ 𝑇2(𝑥)

1׬ + 𝑎0 ∗ 𝑇1(𝑥) + 𝑎1 ∗ 𝑇2(𝑥)

𝑆 x = 𝑓𝑠𝑖𝑔1𝑔1 𝑥 + 1 − 𝑓𝑠𝑖𝑔1 𝑔2 𝑥

RooGaussian sig1("sig1", "Signal component 1", x, mu, sigma1);

RooGaussian sig2("sig2", "Signal component 2", x, mu, sigma2);

// Build Chebychev polynomial pdf

RooChebychev bkg("bkg", "Background", x, {a0, a1});

// Sum the signal components into a composite signal pdf

RooRealVar sig1frac("sig1frac", "fraction of c 1 in signal", 0.8, 0.,

1.);

RooAddPdf sig("sig", "Signal", {sig1, sig2}, sig1frac);

// Sum the composite signal and background

RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, 0., 1.);

RooAddPdf model("model", "g1+g2+a", {bkg, sig}, bkgfrac);

// Create NLL function

std::unique_ptr<RooAbsReal> nll{model.createNLL(*data,

EvalBackend("codegen"))};

Model x = 𝑓𝑏𝑘𝑔𝑃𝑏𝑘𝑔 𝑥 + 1 − 𝑓𝑏𝑘𝑔 𝑆 𝑥

𝑎0 = 0.5, 𝑎1 = 0.2, 𝑓𝑠𝑖𝑔1 = 0.8, 𝑓𝑏𝑘𝑔 = 0.5,

𝜇 = 5, 𝜎1 = 0.5, 𝜎1 = 1.0

Object Oriented Math. Compute Cost

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 4

outputs

likelihood

pdfs

pdfs components

inputs

𝑁𝐿𝐿 = − ෍

𝑐∈𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

෍

𝑖=0

𝑁𝑐

log 𝑀𝑜𝑑𝑒𝑙 𝑥𝑖

Ƹ𝜂, Ƹ𝜒 = argmin
𝜂,𝜒

𝑁𝐿𝐿

Gradient is compute bottleneck
Z. Wolffs, ICHEP22

https://agenda.infn.it/event/28874/contributions/169205/attachments/93887/129094/ICHEP_RooFit_ZefWolffs.pdf

510-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop

Statistical Modelling in CMS

• CMS Combine is the flagship tool for statistical modelling in CMS. It is based on
RooFit but has many customizations.

• The workflows run for days once the statistical model is constructed

• Most workflows are dominated by the gradient part of the minimization step

• Cla∂ is a compiler-based source transformation automatic differentiation tool
integrated in RooFit. It is capable of generating cheap gradients whose
asymptotic computational time complexity is independent on the size of the
inputs

https://arxiv.org/pdf/2404.06614

Integration in CMS Combine
Work steered mostly via CAT hackathons. Thank you Aliya Nigamova and Piergiulio Lenzi!

Cla∂ as RooFit’s AD Engine

7

RooFit Compute Graph

CodeGen/Flatten

Standalone Simplified Compute Graph C++

...

double gauss(double *x) {

using namespace RooFit::Detail;

return gEvaluate(x[3], (x[0] + x[1]),

(x[2] * 1.5)) /

gIntegral(-10., 10., (x[0] +

x[1]), (x[2] * 1.5));

}

...

AD

∆

Optimize

FCN

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop

pdf.fitTo(data, RooFit::EvalBackend("codegen"))

pdf.createNLL(data, RooFit::EvalBackend("codegen"))

Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

Combine Compute Graph

8

Extended Compute Graph
∆

Optimize

FCN

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop

C
o

m
b

in
e

R
o

o
Fi

t

void codegenImpl(RooAddPdf&, CodegenContext&);
void codegenImpl(RooChebychev&, CodegenContext&);
...
void codegenImpl(ProcessNormalization&, CodegenContext&);
void codegenImpl(FastVerticalInterpHistPdf2&, CodegenContext&);

AD

Visit each node

No need to
recompile RooFit

More cleanup is
needed to avoid

layering violations

Annotated Combine Compute Graph

910-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop

// ProcessNormalization::n_exp_bindijet_proc_qqH[thetaList=(pdf_qqbar) asymmThetaList=()

otherFactorList=(r_qqH)] = 0.95

const double t20 = RooFit::Detail::MathFuncs::processNormalization(

0.950000, 1, 0, 1, t19, xlArr + 6, nullptr, xlArr + 6, xlArr + 6, t18);

// RooAddition::n_exp_bindijet[n_exp_bindijet_proc_ggH + n_exp_bindijet_proc_qqH +

n_exp_bindijet_proc_bkg] = 4.55

const double t21 = (t17 + t20 + params[4]);

// RooNLLVar[pdf=model_s weightVar=_weight _weight_sumW2=_weight_sumW2] = 0

for (int loopIdx1 = 0; loopIdx1 < 1; loopIdx1++) {

nll_result += RooFit::Detail::MathFuncs::nll(t25, obs[3], 0, 0);

}

Semantic Meaning RooAbsArg Name

Crosscheck with
RooFit evaluate

zero because of
offsetting

Combine Supported Primitives

1010-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop

Tom Runting, AD in Combine, 23rd April, 2025

https://indico.cern.ch/event/1537656/contributions/6475514/attachments/3055431/5401936/CAT_2025_04_23.pdf

Combine Supported Primitives

1110-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop

To our estimation ~40% of the core Combine classes are supported:

• ProcessNormalization, AsymPow, FastVerticalInterpHistPdf2,
FastVerticalInterpHistPdf2D2

• VerticalInterpPdf after PR1060

Classes in RooFit upstream to support combine:

• RooParametricHist, RooHistPdf

Track progress in real time here

https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/pull/1060
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/blob/main/src/CombineCodegenImpl.cxx

CMS published its Higgs likelihood observation model Higgs observation likelihood

• Very heterogeneous likelihood:
672 parameters in 102 channels with
• Template histogram fits

• Analytical shape fits, numerical integration
necessary in some cases

• Perfect example to test the new
Combine developments

Can be amortized
by reusing the
NLL

CMS Higgs Combination Benchmark

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 12

https://repository.cern/records/c2948-e8875

In this model we observed that the derivatives are small compared to the NLL value
• Numerical differentiation often fails because the finite differences are smaller than

numerical precision on the NLL
• Essential workaround for the Higgs model is to offset the

NLL by initial value with:
pdf.createNLL(data, RooFit::Offset(true))

Problems with this:

• Offsetting might fail if initial value is far from the minimum
• Bookkeeping of offsets is error-prone

With AD, the offsetting is not necessary anymore!

36 - FCN = -9801946.549 Edm = 0.01129396511

37 - FCN = -9801946.566 Edm = 0.01497173883

38 - FCN = -9801946.574 Edm = 0.007242353199

39 - FCN = -9801946.583 Edm = 0.004954953322

40 - FCN = -9801946.589 Edm = 0.005774308843

41 - FCN = -9801946.596 Edm = 0.004695329674

42 - FCN = -9801946.602 Edm = 0.004558156748

43 - FCN = -9801946.615 Edm = 0.008141300763

44 - FCN = -9801946.625 Edm = 0.004861879849

45 - FCN = -9801946.628 Edm = 0.003472778648

46 - FCN = -9801946.63 Edm = 0.001782083931

47 - FCN = -9801946.631 Edm = 0.0007515760698

Minimizer output, showing the small
changes wrt. large NLL value

CMS Higgs Observation Models. Numerical Stability

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 13

Profile of CMS Higgs Combination Benchmark

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 14

• Profiling CMS minimization (full flamegraph). Gradient not the bottleneck anymore!

• Likelihoods in CMS Combine are very optimized, so the RooFit bookkeeping overhead
is relatively larger

• Once RooFit bookkeeping overhead is gone, further optimizing the gradient could be
worth it

Extensive study by Jonas Rembser at https://compiler-research.org/meetings/#caas_05June2025

https://rembserj.web.cern.ch/rembserj/flamegraphs/caas2025/cms_flamegraph.svg?x=760.1&y=1909
https://compiler-research.org/meetings/#caas_05June2025

To scale development we needed to enhance several infrastructure parts of
Combine:

• Update the building Combine logic outside of CMSSW

• Enhanced static analysis on pull requests with clang-tidy (Matthew Barton)

• Formatting consistency with clang-format (Matthew Barton)

• Improved tests and validation that’s run on every pull requests (Keila Moral)

Better Continuous Integration

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 15

Open Challenges

• Reduce jitting cost

• Persistify likelihoods across multiple runs on the grid.

• Static RooFit computation graphs

• No update operations from one end of the graph to the other (eg rework RooMultiPdf-
like classes, analytic minimization of nuisance parameters)

• CI infrastructure for advanced testing and validation

• Ultimately Combine should reuse the generated gradient for all points in profile
likelihood scans even distributed on the grid

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 16

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT, RooFit and
Combine benefits from it in many ways:

• Faster likelihood gradients

• No need for tricks to get numerically stable gradients

• Likelihoods can be expressed in plain C++ without need for aggressive caching
by the user or in frameworks like RooFit
• Good for understanding the math: optimization gets decoupled from logic - simple code

• Good for collaboration: simple C++ can easily be shared and used in other contexts

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 17

A Less-Boring Conclusion

Data → Likelihood → Fit → EFT constraints.

RooFit/Combine likelihoods 2–10x faster would have a major positive impact on
EFT analyses in both practical and strategic ways:

• Expand the scope of EFT analyses

• Improve the quality and precision of constraints

• Enable new techniques and collaborationss

• Shorten the time from theory to results

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine– The 5th MODE Workshop 18

Thank you!

• Numerical differentiation becomes
more accurate.

• Only Helps When Initial Value
Dominates

• Makes Debugging and Logging Confusing

• Fails if Input Changes Too Much
• If you move far from the original parameter values:
• The offset is no longer meaningful.
• The difference between ret and offset becomes large again, so numerical instability

returns.

Offsetting

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 20

double chan1 = 1e-2 * nll_channel(params);

double chan2 = 1e3 * nll_channel(params + 2);

return chan1 + chan2; // 0.01 + 1000

if (DoOffset) {

static double offset = 0.0;

if (offset == 0.0) {

offset = ret; // Save initial value (1e6)

}

ret -= offset; // Now ret is closer to 0

}

Possible next steps and perspectives

• Make the codegen backend default for RooFit

• Work together with experiments to support your usecases and help out in
integration RooFit AD in experiment frameworks

• Extend RooFit’s interfaces so it will be easy to get out the generated code and
gradients to use them outside the RooFit minimization routines

• R & D on analytic higher-order derivatives that are used in Minuit

• Implement advanced clad-based analyses to remove the redundant
computation

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 21

Lower Compute Cost of Gradients

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 22

• Automatic/Algorithmic differentiation (AD) employs the chain rule to
decompose the compute graph into atomic operations.

• Top-down decomposition is called forward and bottom up -- reverse mode

• Reverse mode provides independent time complexity of the gradient from input
parameters at the cost of adding extra code to enable functions to be run
bottom-up (reverse) requiring extra memory

• Operation record-and-replay (operator overloading) or source code
transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

double f_dx(double x) {

double result = x;

double d_result = 1;

for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);

d_result *= result;

}

return d_result;

}

𝑑

𝑑𝑥
𝑒𝑒

𝑒𝑒
𝑒𝑥

= 𝑒𝑥+𝑒
𝑒𝑒

𝑒𝑥

+𝑒𝑒
𝑒𝑥
+𝑒𝑒

𝑥
+𝑒𝑥

// f(x)=e^(e^(e^(e^(e^x))))

#include <cmath>

double f (double x) {

double result = x;

for (unsigned i = 0; i < 5; i++)

result = std::exp(result);

return result;

}

𝑓 𝑥 = 𝑒𝑒
𝑒𝑒

𝑒𝑥
Symbolic via Wolfram Alpha

Handcode Handcode, optimized by expert

AD

Figure out the
analytical fn

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 23

Source Code Transformation with Cla∂

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 24

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++
source code and apply advanced AD high-level analyses

Atell’s talk

Max’s talk

https://github.com/vgvassilev/clad

How to read this plot:

• Seeding time: initial Hessian estimate
(num. second derivatives)

• Minimization time: finding the minimum

• JIT time: time to generate and compile the gradient code
• The gradient can be be reused across different minimizations,

amortizing the JIT time
• For example, possible reuse in profile likelihood scans

Using AD drastically reduces minimization time on top of
the new CPU backend in ROOT 6.32.

Bottom line: 10x faster minimization compared to ROOT
6.30.

25

Can be amortized by
reusing the NLL

ATLAS Benchmark Models
49 HistFactory channels, 739 parameter in total, in rootbench, toy data

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 25

https://indico.jlab.org/event/459/contributions/11570/
https://github.com/root-project/rootbench

Experiments with ATLAS Benchmark models

Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
Constant factor of the consumption by primal function.

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit – The 4th MODE Workshop 26

