COMPILER

C|R

RESEARCH

// B h \\\\
* & JENAA _— Third MODE Workshop on
Differentiable

\;;‘jg & Programming for
2 hep “\a

/ Princeton University
\ AP 24-26 July, 2023)
o

Experiment Design

Scaling RooFit's Automatic Differentiation
Capabilities to CMS Combine

Jonas Rembser”, David Lange*, Vassil Vassilev*
{ *CERN, *Princeton, compiler-research.org }

j| ver [Nov (R
TES | TAM
[l =~ v |f]

This work is partially supported by National Science Foundation under Grant OAC-2311471

https://compiler-research.org/

10-June-2025

Motivation

Likelihoods are central for High Energy Physics

Numerical and

S Sslo o fc(fcilﬁ»f) analytic integrals
L@ai)= || | lff(a? 17, %) dz,
ceunbinned ch icobs) Je\Xeillh X ¢
[] [T Poisreolvé 20 - | [exlayln)
ceEbinned ch(analytical) beobs XEX

n : data, d : auxilary data, 11 : unconstrained parameters, y : constrained parameters

CMS Combine Paper https://arxiv.org/pdf/2404.06614

V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop

https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

1/x—p\2
g (X)'— e—i(jﬂg) RooGaussian sigl ("sigl", "Signal component 1", x, mu, sigmal);
1 - . : "wea - " nwo s " : .
Cﬁ_/ZH' RooGaussian sig2 ("sig2", "Signal component 2", x, mu, sigmaZ2);
_l(x—u)z // Build Chebychev polynomial pdf
e 2\ 07 RooChebychev bkg("bkg", "Background", x, {al0, al});

g, (x) = m

// Sum the signal components into a composite signal pdf

1_+-a0>k71(x)-+-a1>k7§(x) RooRealVar siglfrac("siglfrac", "fraction of ¢ 1 in signal", 0.8, 0.,
Pprg(x) = 1 T T 1.);
f +'a0’k 1(x)'+'a1’k z(x) RooAddPdf sig("sig", "Signal", {sigl, sig2}, siglfrac);

// Sum the composite signal and background
S(X)'_-ﬁﬁglgl(x)_F(j'_'fﬁgl)gZ(x) RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, O.
RooAddPdf model ("model", "gl+g2+a", {bkg, sig}, bkgfrac);

MOdEl(X) — fbkgpbkg(x) + (1 _ fbkg)S(x) // Create NLL function

std::unique ptr<RooAbsReal> nll{model.createNLL (*data,
ap = 0.5,a; = 0.2, f5ig1 = 0.8, fprg = 0.5, EvalBackend ("codegen")) };

u =50 =050 =10

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 5" MODE Workshop 3

Object Oriented Math. Compute Cost

serial old

migrad_seed 230

Serial Old

/

Gradient is compute bottleneck
Z. Wolffs, ICHEP22

(7, %) = argmin|NLL]
n.X

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop 4

https://agenda.infn.it/event/28874/contributions/169205/attachments/93887/129094/ICHEP_RooFit_ZefWolffs.pdf

Statistical Modelling in CMS

* CMS Combine is the flagship tool for statistical modelling in CMS. It is based on
RooFit but has many customizations.

* The workflows run for days once the statistical model is constructed
* Most workflows are dominated by the gradient part of the minimization step

* Clad is a compiler-based source transformation automatic differentiation tool
integrated in RooFit. It is capable of generating cheap gradients whose
asymptotic computational time complexity is independent on the size of the
Inputs

https://arxiv.org/pdf/2404.06614

CMS

Combine

\ N
s I’
“\QA’ \

Ny

Integration in CMS Combine

Work steered mostly via CAT hackathons. Thank you Aliya Nigamova and Piergiulio Lenzi!

First RooFit AD integration #1019

SNVl lenzip merged 10 commits into cms-analysis:main from guitargeek:roofit_ad_dev (LJon Apr 4

L) Conversation 12 -O- Commits 10 [F) Checks 9 Files changed 38

é guitargeek commented on Nov 18, 2024 - edited ~ Contributor

Enable the "codegen" backend with Automatic Differentiation for an initial set of Combine models.

- e e e e e e e e e e ————

Clao as RooFit’s AD Engine

o e

RooFit Compute Graph /" Standalone Simplified Compute Graph C++
i | double gauss (double *x) { i
I : using namespace RooFit::Detail; i
. CodeGen/Flatten | ' AD
i X return gEvaluate (x[3], (x[0] + x[1]), | - A
i i (x[2] * 1.5)) / :
! ! gIntegral (-10., 10., (x[0] + I
: C x[11), (x[2] * 1.5)); | Optimize
|) |
Ill ‘\\\ I/, FCN

pdf.fitTo(data, RooFit::EvalBackend ("codegen™))
pdf.createNLL (data, RooFit::EvalBackend ("codegen"))

Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 5" MODE Workshop 7

Combine Compute Graph

No n?Ed to : void codegenImpl(RooAddPdf&, CodegenContext&);
recompile RooFit Visit each node void codegenImpl(RooChebychev&, CodegenContext&);

void codegenImpl(ProcessNormalization&, CodegenContext&);
void codegenImpl(FastVerticallnterpHistPdf2&, CodegenContext&);

AD

A

More cleanup is Optimize
needed to avoid

layering violations

FCN

- e e e e e e e e e e e e —

-

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop 8

Annotated Combine Compute Graph

Semantic Meaning RooAbsArg Name

// ProcessNormalization::n exp bindijet proc gqgH[thetalist=(pdf ggbar) asymmThetaList=()
otherFactorList=(r ggH)] = 0.95
const double t20 = RooFit::Detail::MathFuncs: :processNormalization (

0.950000, 1, O, 1, t19, xlArr + 6, nullptr, xlArr + 6, x1Arr + 6, tl18);

// RooAddition::n exp bindijet[n exp bindijet proc ggH + n exp bindijet proc ggqH +

n exp bindijet proc bkg] = 4.55

const double t21 = (tl17 + t20 + params[4]); zero because of
offsetting

// RooNLLVar[pdf=model s weightVar= weight weight sumWZ2= weight sumW2] = 0
for (int loopIdxl = 0; loopIdxl < 1; loopIdxl++) {
nll result += RooFit::Detail::MathFuncs::nll(t25, obs[3], 0, 0);

}

Crosscheck with
RooFit evaluate

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop 9

Combine Supported Primitives

» Some of the optimisations/tricks implemented at the time are now
bottlenecks

» For example, Crystal Balls

Combine ("RooDoubleCBFast’) (per loop) Native ("RooCrystalBall’) (per loop)

Obiject creation 28.5 s + 7.74 ps (7 runs, 10,000 loops each) | 28.4 ys + 1.69 ys (7 runs, 10,000 loops each)

Event generation (100k events) [292 ms + 19.9 ms (7 runs, 10 loops each) 241 ms + 15.2 ms (7 runs, 10 loops each)

Minimization 10.3 s £ 1.64 s (7 runs, 2 loops each) 5.89 s + 840 ms (7 runs, 2 loops each)

» Minimisation is slower as function evaluation is less stable

n

» For example: :—m = ™™™ can be non-NaN, even if e™, e™ are individually very
large. Combine computes each term separately, then takes the ratio

Tom Runting, AD in Combine, 23" April, 2025

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop 10

https://indico.cern.ch/event/1537656/contributions/6475514/attachments/3055431/5401936/CAT_2025_04_23.pdf

Combine Supported Primitives

To our estimation ~40% of the core Combine classes are supported:

* ProcessNormalization, AsymPow, FastVerticallinterpHistPdf2,
FastVerticallnterpHistPdf2D2

* VerticallnterpPdf after PR1060
Classes in RooFit upstream to support combine:
e RooParametricHist, RooHistPdf

Track progress in real time here

https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/pull/1060
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/blob/main/src/CombineCodegenImpl.cxx

CMS Higgs Combination Benchmark

CMS published its Higgs likelihood observation model Higgs observation likelihood
* Very heterogeneous likelihood: T

T T T 1 T T T T
Bl Seeding step B Gradient generation

672 parameters in 102 channels with 120 _ ___________________ == wnmicsicr mm Gradent o machie d
+ Template histogram fits oo ___________________ Function J.TE : :
° Analytical Shape ﬁtS, numerical integration % 30: .. e]
necessary in some cases TN —— Canbe amortized-
+ Perfect example to test the new o I Z{Lsgth _____________
Combine developments 20f- :

RooFit legacy RooFit RooFit AD
Evaluation backend

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop 12

https://repository.cern/records/c2948-e8875

CMS Higgs Observation Models. Numerical Stability

In this model we observed that the derivatives are small compared to the NLL value

* Numerical differentiation often fails because the finite differences are smaller than
numerical precision on the NLL

)) i 36 - FCN = -9801946.549 Edm = 0.01129396511

* Essential workaround for the Higgs model is to offset the ., - .ci -~ —sooiose.o06 s = 0.0100717500
NLL by Inltlal Value Wlth 38 - FCN = -9801946.574 Edm = 0.007242353199
.createNLL (, ° o (true)) 39 - FCN = -9801946.583 Edm = 0.004954953322

40 - FCN = -9801946.589 Edm = 0.005774308843

Problems with this: 41 - FCN = -9801946.596 Edm = 0.004695329674
42 - FCN = -9801946.602 Edm = 0.004558156748

» Offsetting might fail if initial value is far from the minimum : - rev - -seor96.615 war = 0.00810130076:
_ _ 44 - FCN = -9801946.625 Edm = 0.004861879849

¢ BOOkkeeplng of offsets is error-prone 45 - FCN = -9801946.628 Edm = 0.003472778648
. . . 46 - FCN = -9801946.63 Edm = 0.001782083931
With AD, the offsetting is not necessary anymore! 47 - FON - ~9801946.631 Bdn - 0.0007515760698

Minimizer output, showing the small
changes wrt. large NLL value

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 5" MODE Workshop 13

Profile of CMS Higgs Combination Benchmark

RooFit bookkeepingl &4

RooFit::Evaluato..
RooFit::Evaluato..
Rool .7 .a . Wra..

dr-l1011- 11—

RooMinimizerFcn::evaluateGradient
ROOT::Math::GradFunctor::Gradient

RooRealVar::setVal

Roo1 by ™3 1i T3ea
RooAbsReal::getVal\

ROUI:Math::Gradkunctor:Dokval
ROOT::Minuit2::MnLineSearch::operator " [[a [(oo iadelai m

DNANT. AMMinnit? L VarmishlalMatricBuildar. AMlinimaam

* Profiling CMS minimization (full flamegraph). Gradient not the bottleneck anymore!

* Likelihoods in CMS Combine are very optimized, so the RooFit bookkeeping overhead
is relatively larger

* Once RooFit bookkeeping overhead is gone, further optimizing the gradient could be
worth it

Extensive study by Jonas Rembser at https.//compiler-research.orq/meetings/#caas 05June2025

10-June-2025 V. Vassilev -- Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine— The 51" MODE Workshop 14

https://rembserj.web.cern.ch/rembserj/flamegraphs/caas2025/cms_flamegraph.svg?x=760.1&y=1909
https://compiler-research.org/meetings/#caas_05June2025

Better Continuous Integration

To scale development we needed to enhance several infrastructure parts of
Combine:

e Update the building Combine logic outside of CMSSW

* Enhanced static analysis on pull requests with clang-tidy (Matthew Barton)
* Formatting consistency with clang-format (Matthew Barton)

* Improved tests and validation that’s run on every pull requests (Keila Moral)

Open Challenges

e Reduce jitting cost
 Persistify likelihoods across multiple runs on the grid.

e Static RooFit computation graphs

* No update operations from one end of the graph to the other (eg rework RooMultiPdf-
like classes, analytic minimization of nuisance parameters)

 Cl infrastructure for advanced testing and validation

* Ultimately Combine should reuse the generated gradient for all points in profile
likelihood scans even distributed on the grid

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT, RooFit and
Combine benefits from it in many ways:

* Faster likelihood gradients
* No need for tricks to get numerically stable gradients

* Likelihoods can be expressed in plain C++ without need for aggressive caching
by the user or in frameworks like RooFit
* Good for understanding the math: optimization gets decoupled from logic - simple code
 Good for collaboration: simple C++ can easily be shared and used in other contexts

A Less-Boring Conclusion

Data — Likelihood — Fit - EFT constraints.

RooFit/Combine likelihoods 2—10x faster would have a major positive impact on
EFT analyses in both practical and strategic ways:

e Expand the scope of EFT analyses

* Improve the quality and precision of constraints
* Enable new techniques and collaborationss

* Shorten the time from theory to results

Thank you!

double chanl le-2 * nll channel (params) ;
double chan2 le3 * nll channel (params + 2);

Offsetting return chanl : chan2; // 0.01 + 1000

if (DoOffset) {
static double offset = 0.0;
if (offset == 0.0) {
offset = ret; // Save initial value (leé6)

* Numerical differentiation becomes o .
ret -= offset; // Now ret is closer to 0
more accurate. \
* Only Helps When Initial Value
Dominates

* Makes Debugging and Logging Confusing
* Fails if Input Changes Too Much

* If you move far from the original parameter values:

* The offset is no longer meaningful.

* The difference between ret and offset becomes large again, so numerical instability
returns.

Possible next steps and perspectives

* Make the codegen backend default for RooFit

* Work together with experiments to support your usecases and help out in
integration RooFit AD in experiment frameworks

* Extend RooFit’s interfaces so it will be easy to get out the generated code and
gradients to use them outside the RooFit minimization routines

* R & D on analytic higher-order derivatives that are used in Minuit

* Implement advanced clad-based analyses to remove the redundant
computation

Lower Compute Cost of Gradients

e Automatic/Algorithmic differentiation (AD) employs the chain rule to
decompose the compute graph into atomic operations.

* Top-down decomposition is called forward and bottom up -- reverse mode

e Reverse mode provides independent time complexity of the gradient from input
parameters at the cost of adding extra code to enable functions to be run
bottom-up (reverse) requiring extra memory

* Operation record-and-replay (operator overloading) or source code
transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

X Symbolic via Wolfram Alpha d

e e€” e€” e* X
e€ >\ ,e° — ,x+e® +ef +e€ +e*
f(x) —e Ix e =e

Figure out the Handcode
analytical fn |

// f(x)=e”(e”(e”(e"(e"x))))

Handcode, optimized by expert

v

double f dx(double x) {

, double result = x;
tinclude <cmath> double d_result = 1;
double £ (double x) | AD . for (unszgned i =0; i < 5; i++) {
double result = x; | |] result = std::exp(result) ;
for (unsigned 1 = 0; 1 < 5; 1i++) d result *—= result:
result = std::exp(result); -

}

return d result;

}

return result;

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4t MODE Workshop

Source Code Transformation with Clao

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++
source code and apply advanced AD high-level analyses

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4t MODE Workshop 24

https://github.com/vgvassilev/clad

ATLAS Benchmark Models

49 HistFactory channels, 739 parameter in total, in rootbench, toy data

How to read thiS pIOt:] 'l]]- INLL c]reatio[n '- lGradi;ent ge]neratlion 1

70 - B BN Seeding step WM Gradient to machine code 7

* Seeding time: initial Hessian estimate : W Minimization Other]
(num. second derivatives) 0 I Function JIT

* Minimization time: finding the minimum S0

—

: time to generate and compile the gradient codeg 40 o T ey

* The gradient can be be reused across different minimizations, = 3o F. FRN BRSO
amortizing the JIT time :

* For example, possible reuse in profile likelihood scans 20 = I - I

Using AD drastically reduces minimization time on top of 0 R B

the new CPU backend in ROOT 6.32.

RooFit legacy RooFit RooFit AD
Evaluation backend

g%téc)om line: 10x faster minimization compared to ROOT

25
25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4t" MODE Workshop

https://indico.jlab.org/event/459/contributions/11570/
https://github.com/root-project/rootbench

Experiments with A

Clad JIT Time (ms) vs Channels

LAS Benchmark models

Primal to Gradient Evaluation time Ratio vs Channels

5.00

o 124%x + 802
8000

- 5810 o o
0 6000 265 5115 () g 3.00
~ 4187 o
Q [Q
£ 4000 3323 ° £
i~ i— 2.00
— 2519 ® _
|-]
= 1906 » b
O
k 2000 @ 1.00
Q

0 0.00

10 20 30 40 30 10 20 30 40 50
Channels

Channels

Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
Constant factor of the consumption by primal function.

25-September-2024 V. Vassilev -- Automatic Differentiation in RooFit — The 4t" MODE Workshop

26

