

Scaling RooFit's Automatic Differentiation Capabilities to CMS Combine

Jonas Rembser*, David Lange+, <u>Vassil Vassilev</u>+ { *CERN, +Princeton, <u>compiler-research.org</u> }

Motivation

Likelihoods are central for High Energy Physics

$$L(\vec{n}, \vec{a} | \vec{\eta}, \vec{\chi}) = \prod_{c \in unbinned\ ch} \prod_{i \in obs} \frac{f_c(\vec{x}_{ci} | \vec{\eta}, \vec{\chi})}{\int f_c(\vec{x}_{ci} | \vec{\eta}, \vec{\chi}) \, d\vec{x}_c} \cdot \prod_{c \in binned\ ch(analytical)} \prod_{b \in obs} Pois(n_{cb} | \nu(\vec{\eta}, \vec{\chi})) \cdot \prod_{\chi \in \vec{\chi}} c_{\chi}(a_{\chi} | \chi)$$

 \vec{n} : data, \vec{a} : auxiliary data, $\vec{\eta}$: unconstrained parameters, $\vec{\chi}$: constrained parameters

CMS Combine Paper https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

$$g_1(x) = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma_1}\right)^2}$$

$$g_2(x) = \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{x-\mu}{\sigma_2})^2}$$

$$P_{bkg}(\mathbf{x}) = \frac{1 + a_0 * T_1(\mathbf{x}) + a_1 * T_2(\mathbf{x})}{\int 1 + a_0 * T_1(\mathbf{x}) + a_1 * T_2(\mathbf{x})}$$

$$S(x) = f_{sig1}g_1(x) + (1 - f_{sig1})g_2(x)$$

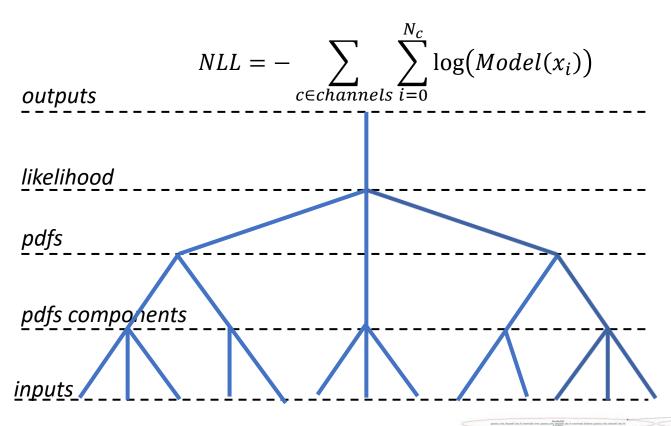
$$Model(x) = f_{bkg}P_{bkg}(x) + (1 - f_{bkg})S(x)$$

$$a_0 = 0.5, a_1 = 0.2, f_{sig1} = 0.8, f_{bkg} = 0.5,$$

 $\mu = 5, \sigma_1 = 0.5, \sigma_1 = 1.0$

```
RooGaussian sig1("sig1", "Signal component 1", x, mu, sigma1);
RooGaussian sig2("sig2", "Signal component 2", x, mu, sigma2);
// Build Chebychev polynomial pdf
RooChebychev bkg("bkg", "Background", x, {a0, a1});
// Sum the signal components into a composite signal pdf
RooRealVar sig1frac("sig1frac", "fraction of c 1 in signal", 0.8, 0.,
1.);
RooAddPdf sig("sig", "Signal", {sig1, sig2}, sig1frac);
// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, 0., 1.);
RooAddPdf model("model", "g1+g2+a", {bkg, sig}, bkgfrac);
// Create NLL function
std::unique ptr<RooAbsReal> nll{model.createNLL(*data,
EvalBackend("codegen"))};
```

Object Oriented Math. Compute Cost



Serial Old

Gradient is compute bottleneck Z. Wolffs, ICHEP22

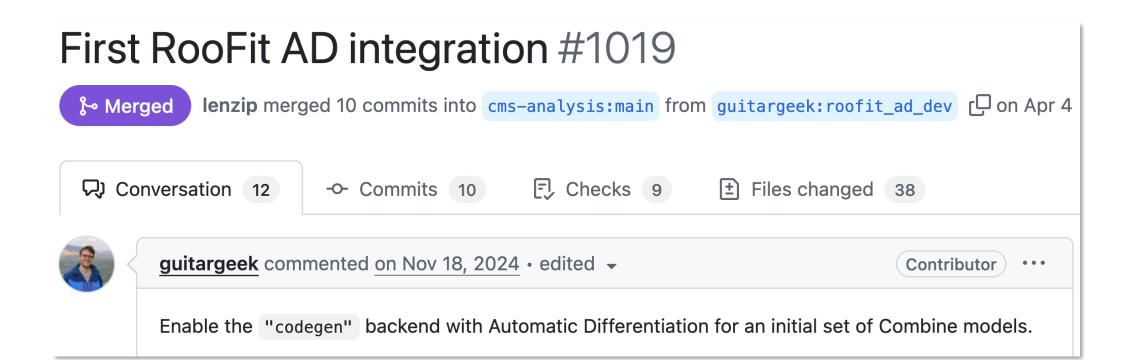
Statistical Modelling in CMS

- <u>CMS Combine</u> is the flagship tool for statistical modelling in CMS. It is based on RooFit but has many customizations.
- The workflows run for days once the statistical model is constructed
- Most workflows are dominated by the gradient part of the minimization step
- Clad is a compiler-based source transformation automatic differentiation tool integrated in RooFit. It is capable of generating cheap gradients whose asymptotic computational time complexity is independent on the size of the inputs

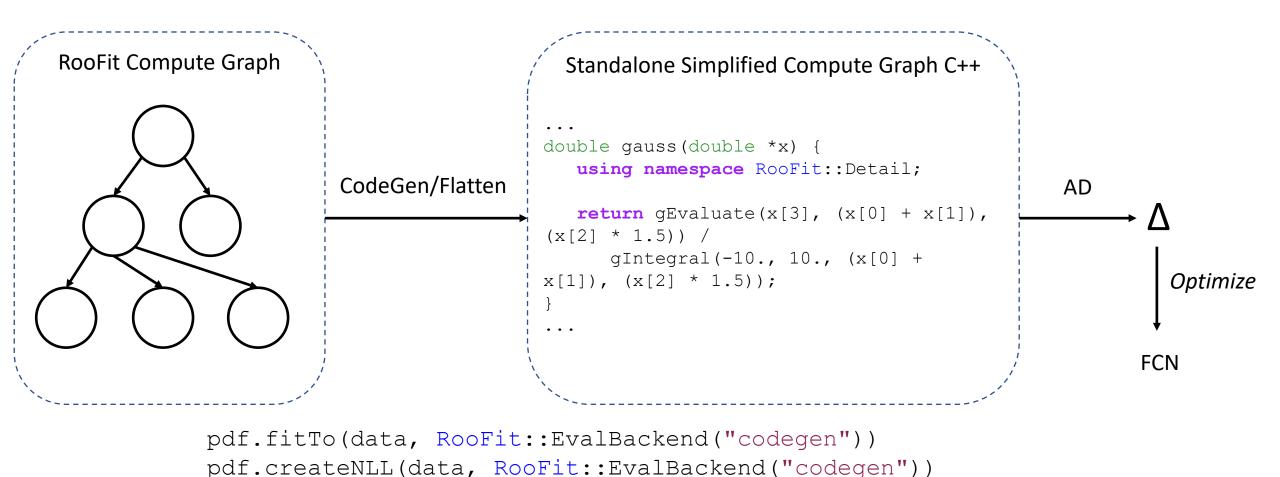


Integration in CMS Combine

Work steered mostly via CAT hackathons. Thank you Aliya Nigamova and Piergiulio Lenzi!

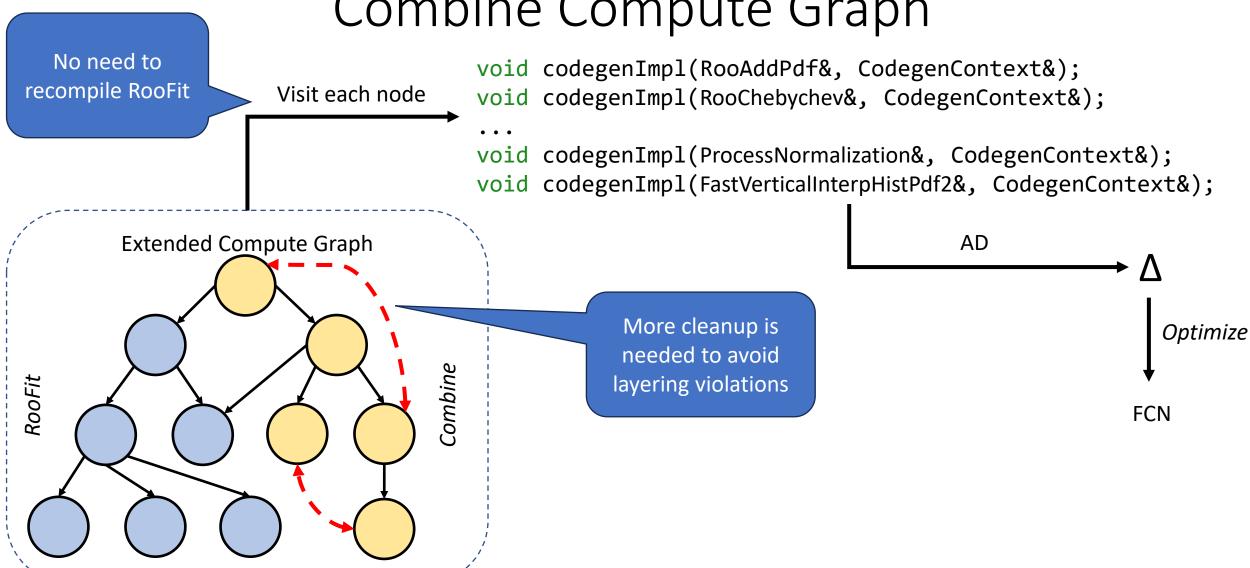


Clad as RooFit's AD Engine



Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

Combine Compute Graph



Annotated Combine Compute Graph

Semantic Meaning

RooAbsArg Name

```
// ProcessNormalization::n exp bindijet proc qqH[ thetaList=(pdf qqbar) asymmThetaList=()
otherFactorList=(r qqH) ] = 0.95
const double t20 = RooFit::Detail::MathFuncs::processNormalization(
      0.950000, 1, 0, 1, t19, xlArr + 6, nullptr, xlArr + 6, xlArr + 6, t18);
// RooAddition::n exp bindijet[ n exp bindijet proc ggH + n exp bindijet proc qqH +
n exp bindijet proc bkg ] = 4.55
                                                                                      zero because of
  const double t21 = (t17 + t20 + params[4]);
                                                                                        offsetting
// RooNLLVar[ pdf=model s weightVar= weight weight sumW2= weight sumW2 ] = 0
for (int loopIdx1 = 0; loopIdx1 < 1; loopIdx1++) {</pre>
  nll result += RooFit::Detail::MathFuncs::nll(t25, obs[3], 0, 0);
                                                                             Crosscheck with
                                                                             RooFit evaluate
```

Combine Supported Primitives

- Some of the optimisations/tricks implemented at the time are now bottlenecks
- ► For example, Crystal Balls

	Combine (`RooDoubleCBFast`) (per loop)	Native (`RooCrystalBall`) (per loop)
Object creation	28.5 μs ± 7.74 μs (7 runs, 10,000 loops each)	28.4 μs ± 1.69 μs (7 runs, 10,000 loops each)
Event generation (100k events)	292 ms ± 19.9 ms (7 runs, 10 loops each)	241 ms ± 15.2 ms (7 runs, 10 loops each)
Minimization	10.3 s ± 1.64 s (7 runs, 2 loops each)	5.89 s ± 840 ms (7 runs, 2 loops each)

- Minimisation is slower as function evaluation is less stable
 - ► For example: $\frac{e^n}{e^m} = e^{n-m}$ can be non-NaN, even if e^n, e^m are individually very large. Combine computes each term separately, then takes the ratio

<u>7 / 16</u>

Combine Supported Primitives

To our estimation ~40% of the core Combine classes are supported:

- ProcessNormalization, AsymPow, FastVerticalInterpHistPdf2, FastVerticalInterpHistPdf2D2
- VerticalInterpPdf after PR1060

Classes in RooFit upstream to support combine:

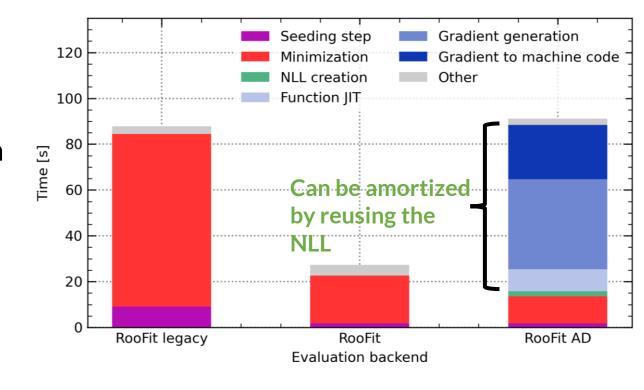
RooParametricHist, RooHistPdf

Track progress in real time <u>here</u>

CMS Higgs Combination Benchmark

CMS published its Higgs likelihood observation model Higgs observation likelihood

- Very heterogeneous likelihood:
 672 parameters in 102 channels with
 - Template histogram fits
 - Analytical shape fits, numerical integration necessary in some cases
- **Perfect example** to test the new Combine developments



CMS Higgs Observation Models. Numerical Stability

In this model we observed that the derivatives are small compared to the NLL value

- Numerical differentiation often fails because the finite differences are smaller than numerical precision on the NLL
- Essential workaround for the Higgs model is to offset the NLL by initial value with:

```
pdf.createNLL(data, RooFit::Offset(true))
```

Problems with this:

- Offsetting might fail if initial value is far from the minimum 43 FCN = -9801946.615 Edm = 0.008141300763
- Bookkeeping of offsets is error-prone

With AD, the offsetting is not necessary anymore!

```
37 - FCN = -9801946.566 Edm = 0.01497173883

38 - FCN = -9801946.574 Edm = 0.007242353199

39 - FCN = -9801946.583 Edm = 0.004954953322

40 - FCN = -9801946.589 Edm = 0.005774308843

41 - FCN = -9801946.596 Edm = 0.004695329674

42 - FCN = -9801946.602 Edm = 0.004558156748

43 - FCN = -9801946.615 Edm = 0.008141300763

44 - FCN = -9801946.625 Edm = 0.004861879849

45 - FCN = -9801946.628 Edm = 0.003472778648

46 - FCN = -9801946.63 Edm = 0.001782083931

47 - FCN = -9801946.631 Edm = 0.0007515760698
```

36 - FCN = -9801946.549 Edm = 0.01129396511

Minimizer output, showing the small changes wrt. large NLL value

Profile of CMS Higgs Combination Benchmark

- Profiling CMS minimization (<u>full flamegraph</u>). Gradient not the bottleneck anymore!
- Likelihoods in CMS Combine are very optimized, so the **RooFit bookkeeping overhead** is relatively larger
- Once RooFit bookkeeping overhead is gone, further optimizing the gradient could be worth it

Extensive study by Jonas Rembser at https://compiler-research.org/meetings/#caas 05June2025

Better Continuous Integration

To scale development we needed to enhance several infrastructure parts of Combine:

- Update the building Combine logic outside of CMSSW
- Enhanced static analysis on pull requests with clang-tidy (Matthew Barton)
- Formatting consistency with clang-format (Matthew Barton)
- Improved tests and validation that's run on every pull requests (Keila Moral)

Open Challenges

- Reduce jitting cost
 - Persistify likelihoods across multiple runs on the grid.
- Static RooFit computation graphs
 - No update operations from one end of the graph to the other (eg rework RooMultiPdflike classes, analytic minimization of nuisance parameters)
- CI infrastructure for advanced testing and validation
- Ultimately Combine should reuse the generated gradient for all points in profile likelihood scans even distributed on the grid

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT, RooFit and Combine benefits from it in many ways:

- Faster likelihood gradients
- No need for tricks to get numerically stable gradients
- Likelihoods can be expressed in plain C++ without need for aggressive caching by the user or in frameworks like RooFit
 - Good for understanding the math: optimization gets decoupled from logic simple code
 - Good for collaboration: simple C++ can easily be shared and used in other contexts

A Less-Boring Conclusion

Data \rightarrow Likelihood \rightarrow Fit \rightarrow EFT constraints.

RooFit/Combine likelihoods 2–10x faster would have a major positive impact on EFT analyses in both practical and strategic ways:

- Expand the scope of EFT analyses
- Improve the quality and precision of constraints
- Enable new techniques and collaborationss
- Shorten the time from theory to results

Thank you!

Offsetting

- Numerical differentiation becomes more accurate.
- Only Helps When Initial Value Dominates
- Makes Debugging and Logging Confusing
- Fails if Input Changes Too Much
 - If you move far from the original parameter values:
 - The offset is no longer meaningful.
 - The difference between ret and offset becomes large again, so **numerical instability** returns.

```
double chan1 = 1e-2 * nll_channel(params);
double chan2 = 1e3 * nll_channel(params + 2);
return chan1 + chan2; // 0.01 + 1000

if (DoOffset) {
    static double offset = 0.0;
    if (offset == 0.0) {
        offset = ret; // Save initial value (1e6)
    }
    ret -= offset; // Now ret is closer to 0
}
```

Possible next steps and perspectives

- Make the codegen backend default for RooFit
- Work together with experiments to support your usecases and help out in integration RooFit AD in experiment frameworks
- Extend RooFit's interfaces so it will be easy to get out the generated code and gradients to use them outside the RooFit minimization routines
- R & D on analytic higher-order derivatives that are used in Minuit
- Implement advanced clad-based analyses to remove the redundant computation

Lower Compute Cost of Gradients

- Automatic/Algorithmic differentiation (AD) employs the chain rule to decompose the compute graph into atomic operations.
- Top-down decomposition is called forward and bottom up -- reverse mode
- Reverse mode provides independent time complexity of the gradient from input parameters at the cost of adding extra code to enable functions to be run bottom-up (reverse) requiring extra memory
- Operation record-and-replay (operator overloading) or source code transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

```
Symbolic via Wolfram Alpha
                                                         \frac{d}{dx}\left(e^{e^{e^{e^{x}}}}\right) = e^{x+e^{e^{e^{x}}}+e^{e^{x}}+e^{e^{x}}+e^{e^{x}}+e^{e^{x}}
      Figure out the
                     Handcode
                                                                               Handcode, optimized by expert
      analytical fn
                                                             double f_dx (double x) {
// f(x) = e^{(e^{(e^{(e^{(e^{(x)})})})}
                                                                double result = x;
#include <cmath>
                                                                double d result = 1;
double f (double x) {
                                                  AD
                                                                for (unsigned i = 0; i < 5; i++) {
  double result = x;
                                                                    result = std::exp(result);
  for (unsigned i = 0; i < 5; i++)
                                                                    d result *= result;
     result = std::exp(result);
  return result;
                                                                return d result;
```

Source Code Transformation with Clad

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++ source code and apply advanced AD high-level analyses

ATLAS Benchmark Models

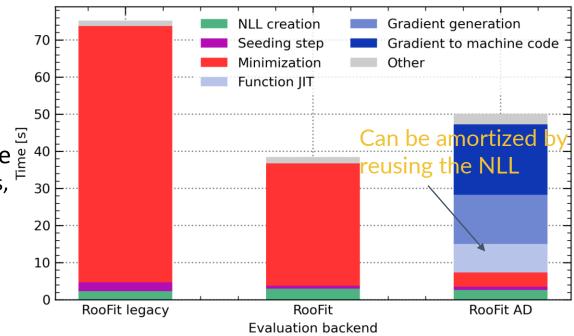
49 HistFactory channels, 739 parameter in total, in rootbench, toy data

How to read this plot:

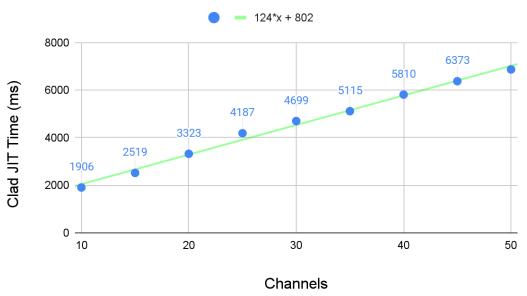
- Seeding time: initial Hessian estimate (num. second derivatives)
- Minimization time: finding the minimum
- JIT time: time to generate and compile the gradient code
 - The gradient can be be reused across different minimizations, amortizing the JIT time
 - For example, possible reuse in **profile likelihood scans**

Using AD drastically reduces minimization time on top of the new CPU backend in ROOT 6.32.

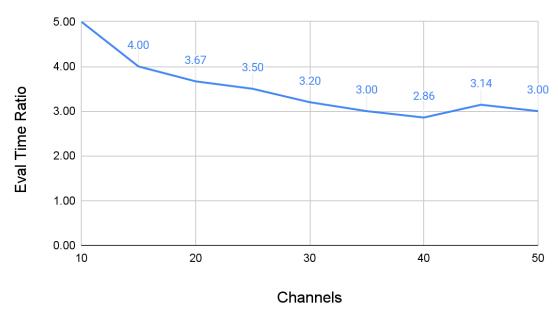
Bottom line: **10x faster minimization** compared to ROOT 6.30.



Experiments with ATLAS Benchmark models



Primal to Gradient Evaluation time Ratio vs Channels



Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks. Constant factor of the consumption by primal function.