COMPILER

| K

RESEARCH

Automatic Differentiation in RooFit

Jonas Rembser”, Petro Zarytskyi*, Vassil Vassilev*
{ *CERN, *Princeton, compiler-research.org }

This work is partially supported by National Science Foundation under Grant OAC-2311471

https://compiler-research.org/

Disclaimer

* The purpose of this talk is not about promoting a specific analysis tool

* The talk is not about having more of RooFit, rather the opposite to demonstrate
how to have less RooFit with extended capabilities

* The goal of the talk is to demonstrate another take on automatic
differentiation in scientific workflows

Introduction

If math is the language of science, the language of experimental
science is statistics.

Statistical modelling helps us define a scientific narrative by
talking to our data sets

Introduction

o i 1T 11 I | I L | I 1T 11 I | I 1T 171 I T 11 I | B I | I I | ;
o
= ATLAS 2011 -2012 Obs
§ Vs=7TeV: [Ldt = 4.6-4.8 fb" e+ Exp. =
is=8TeV: [Ldt=5.85.9 fb" M+ic
1 A I SRR T IIIIIIIIIIIIIIIIIIIIIIIIII It o O
(O B T T T T TR e e s 1o
102 B T e 20
.1 0-3 ----------121'-%1‘-,-.:: -- 3G
104 N . /S
10° ' 40
10°® .,
107 e T . ':,:: """"""""""""""""" 50
108§
109 - N . N 60
10710 ..
10_11 SN N W W NN TN W M W N TN SN WO T (TN TN W T NN T MR |‘.|“L | R =
110 115 120 125 130 135 140 145 150
m, [GeV]

01-October-2024

1

—
Q
N

Local p-value
S
N

—
Q
D

10°

107°

12
10]

Observation of a New Boson at a Mass of 125 GeV with the ATLAS and CMS Experiments at the LHC

CMS \s=7TeV,L=51f" \s=8TeV,L=531b"
T T T T [T T T T I T T T T I T T T T l T T T T I T T T T] T T T T
1o
~ 126
A\~ :
30
ERRALI 40
__ \\‘ v —_ 50
S ““ R
...... R 60
[~ | = Combined obs. \‘ 7
[| ==== Exp.for SMH \‘ -]
| |=——\s=7TeV _
[|—— {s=8TeV 176
= W A A S S S S S S S S S) S S S S S S =
10 115 120 125 130 135 140 145
m, (GeV)
Credits: ATLAS, CMS Collaborations
4

V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

Motivation

Likelihoods are central for High Energy Physics

Numerical and

l l fc (fcilﬁ»)? analytic integrals
b ffc(falﬁ:)?) dfc

A
ceunbinned ch i€ob

1_[l_[Pois(n.,|lv(7, X)) - l_[Cx(axl)()

cebinned ch(analytical) beobs YEX

n : data, d : auxilary data, 17 : unconstrained parameters, y : constrained parameters

CMS Combine Paper https://arxiv.org/pdf/2404.06614

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

g1(x) = alﬁ

1 _ 2
__ 1 555
g2(x) sze z

14+ayg*Ty(x)+aq *xTy(x)
J1+ay*Ti(x)+ ay * T,(x)

P bkg (x) =

S(x) = fsiglgl(x) + (1 - fsigl)gz (x)

Model(x) = forgPorg () + (1 = fprg)S(x)

Ag = 05, a, = O'ZIfSigl == 0-8rfbkg = 05,
u =50 =050 =1.0

RooGaussian sigl ("sigl", "Signal component 1", x, mu, sigmal)
RooGaussian sig2("sig2", "Signal component 2", x, mu, sigma?Z2)

// Build Chebychev polynomial pdf
RooChebychev bkg("bkg", "Background", x, {a0, al});

// Sum the signal components into a composite signal pdf
RooRealVar siglfrac("siglfrac", "fraction of ¢ 1 in signal',
1.);

RooAddPdf sig("sig", "Signal'", {sigl, sig2}, siglfrac);

// Sum the composite signal and background
RooRealVar bkgfrac ("bkgfrac", "fraction of background", 0.5,
RooAddPdf model ("model", "gl+g2+a", {bkg, sig}, bkgfrac);

// Create NLL function

std::unique ptr<RooAbsReal> nll{model.createNLL (*data,
EvalBackend ("codegen")) };

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

.
14

.
14

0.

8,

0

L 4

Object Oriented Math. Compute Cost

serial old

migrad_seed 230

Serial Old

4

Gradient is compute bottleneck
Z. Wolffs, ICHEP22

(, %) = argmin[NLL]
n,x

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall 7

https://agenda.infn.it/event/28874/contributions/169205/attachments/93887/129094/ICHEP_RooFit_ZefWolffs.pdf

Lower Compute Cost of Gradients

e Automatic/Algorithmic differentiation (AD) employs the chain rule to
decompose the compute graph into atomic operations from differential calculus
perspective.

* Top-down decomposition is called forward and bottom up -- reverse mode

* Reverse mode has independent gradient time complexity from input parameters
at the cost of adding extra code to enable functions to be run bottom-up
(reverse) requiring extra memory

* Operation record-and-replay (operator overloading) or source code
transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

e X
+e€ +ef +e”*

»

_ e’ >
f (x)‘ =e T

A

ox Symbolic via Wolfram Alpha d pe* pe* X
(eee) — pXxte

Figure out the Handcode Handcode, optimized by expert

analytical fn

v v

double £ dx(double x) {
// f(x)=e"(e"(e"(e”(e’x)))) -

, double result = x;
#include <cmath> double d result = 1;
double £ (double_x) { AD R for (unsggned i=0; 1 < 5; i++) {
double result = x; | | result = std::exp(result);
for (unsigned 1 = 0; 1 < 5; 1++) d result *= result:
result = std::exp(result);) — '

return result; return d result;

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

Source Code Transformation with Clao

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++
source code and apply advanced AD high-level analyses

https://github.com/vgvassilev/clad

- e e e e e ————

/ RooFit Compute Graph /" Standalone Simplified Compute Graph C++

Claod as RooFit's AD Engine

B e I e e . e

double gauss (double *x) {
using namespace RooFit::Detail;

' CodeGen/Flatten . AD
! 4 return gEvaluate (x[3], (x[0] + x[11), E > [x
i o (x[2] * 1.5)) / |
i ! gIntegral (-10., 10., (x[0] + :
; x[11), (x[2] * 1.5)); | Optimize
! o} I
\ E FCN

__

pdf.fitTo (data, RooFit::EvalBackend ("codegen'"))
pdf.createNLL (data, RooFit::EvalBackend("codegen'))

Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall 11

Team

Jonas Rembser, RooFit Maintainer

Derivatives in C++ in HEP

* Relevant for building gradients used in fitting and minimization. 2 O 1 3 _ 2 O 2 1
* Minimization of likelihood function with ~1000 parameters

e a° 10 T T T T T e u‘
o7 TV, gy g LATLAS Preiminary SI0E o '~ |
's=8TeV,L=53 1" (s} 3 5 3 1 7 .
‘ ' ~ 107 - 1, Garima Singh Vaibhav Thakkar
Rl e \ (L2 -
| e A vy 2= 3¢ A
E E:S.July 2011 ."»\\'_/ / . }:
10“{5)9«36 y -§ 40
10'5;rcsn Se nzmn';'-. / 'i &
of —o v .., 3
10-7 e 5 ulzmz - G '
10'8:. I I L L 1 EX:&‘: 1 1 Oog e
& 110 115 120 125 130 135 140 145 150
solid contour: ~ 68% CL Cv S m m f C d a
dashed contour: 95% CL my [GeV] u er 0 0 e
1.09.14

Vassil Vassilev/ACAT14

Social Engineering, Software Engineering, Social Engineering...

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

12

https://compiler-research.org/team/GarimaSingh
https://compiler-research.org/team/VaibhavThakkar
https://root.cern/about/team/

What was a discovery yesterday is a test case today
Clad-based AD to speedup complex fits by 10x

ATLAS

How to read this plot:

e Seeding time: initial Hessian estimate
(num. second derivatives)

* Minimization time: finding the minimum

: time to generate and compile the gradient code
* The gradient can be be reused across different minimizations,

amortizing the JIT time

* For example, possible reuse in profile likelihood scans

Using AD drastically reduces minimization time on top of

the new CPU backend in ROOT 6.32.

Bottom line: 10x faster minimization compared to ROOT

6.30.

01-October-2024

iggs Combination Benchmark Models

49 HistFactory channels, 739 parameter in total, in rootbench, toy data

Atlas Higgs Model benchmark - single minimization

Time (seconds)

JIT Time m Minimization time M Seeding time

N

Legacy CPU CPU Codegen + AD
(ROOT 6.30 default) (ROOT 6.32 default)

100

75

50

25

Final Min Val = -368.36 for all evaluations

V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall 14

https://indico.jlab.org/event/459/contributions/11570/
https://github.com/root-project/rootbench

Experiments with ATLAS Benchmark models

Clad JIT Time (ms) vs Channels Primal to Gradient Evaluation time Ratio vs Channels

@ 124*x + 802 s
8000
6373 4.00
® 6000 5115 i - 2
e -
= 4699 g &’ 3.00
= 4187 o)
o Y o
= — 3323 ® =
I': S i = 200
= ©
S 1906 o g 6Mb more
o 2000 i
R " 1.00 eak memor
O P y
0 0.00
10 20 30 40 50 10 20 30 40 50
Channels Channels

Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
Constant factor of the consumption by primal function.
15

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

CMS Higgs Obs. Open Data Models. Case Study

CMS published RooFit-based Higgs observation likelihood, 672 parameters, 102 channels, real data

Very heterogeneous likelihood:
* Template histogram fits like in the ATLAS benchmark

* Analytical shape fits, numerical integration necessary in some cases
Perfect example to test the new RooFit developments

See also the presentation on CMS analysis tools at ICHEP.

We implemented CMS-specific primitives in a custom CMS combine branch

Showing 17 changed files with 1,704 additions and 113 deletions.

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall 16

https://indico.cern.ch/event/1291157/contributions/5889475/
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/compare/main...guitargeek:HiggsAnalysis-CombinedLimit:roofit_ad_ichep_2024?expand=1
https://repository.cern/records/c2948-e8875

CMS Higgs Observation Models. Benchmarks

* The new CPU code path default in ROOT 6.32 cwis open Data Higgs Model - single minimization
iS a b|g improvement to the Old ROOF|t’ JIT Time ™ Minimization time m Seeding time

possibly making many custom improvements ;
in combine not necessary anymore .

e The AD backend further reduces
minimization time

* Printable NLL: improved understanding of the
process)

30

20

N\

 Work in progress to improve the produced ’ RO CRY oRy oy Codesen D
code and its gradient

Time (seconds)

01-October-2024 V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall 17

CMS Higgs Observation Models. Numerical Stability

In the CMS model we observed that the derivatives are small compared to the NLL value

e Numerical differentiation often fails because the finite differences are smaller than numerical

precision on the NLL

* Essential workaround for the Higgs model is to offset the NLL -
by initial value with: ji
.createNLL (, (true)) ii
Problems with this: -
* Offsetting might fail if initial value is far from the minimum "
* Bookkeeping of offsets is error-prone -

With AD, the offsetting is not necessary anymore!

01-October-2024

FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN
FCN

-9801946.549
-9801946.566
-9801946.574
-9801946.583
-9801946.589
-9801946.596
-9801946.602
-9801946.615
-9801946.625
-9801946.628

-9801946.63
-9801946.631

Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm
Edm

O O O O O O O o o o o o

changes wrt. large NLL value

V. Vassilev et al -- Automatic Differentiation in RooFit — CMS ML Town Hall

.01129396511
.01497173883
.007242353199
.004954953322
.005774308843
.004695329674
.004558156748
.008141300763
.004861879849
.003472778648
.001782083931
.0007515760698

Minimizer output, showing the small

18

Minimization Process

We use off-shelf minimizers coming with RooFit/Minuit

* BFGS through Minuit with 40 years of embedded HEP domain knowledge

* The gradient is externally provided but the final Hessian for the covariance matrix is
still done numerically and slow

ML minimization is tricky for HEP:

* Most of the ML-oriented minimizers are based on stochastic gradient descent. Small

steps are taken because the risk of overfitting. Too expensive for likelihood
minimization

We have an open bi-weekly implementers” meeting discussing high-performance
statistical analysis w/ AD: indico

https://indico.cern.ch/event/1417934/

Possible next steps and perspectives

* Make the codegen backend default for RooFit

* Work together with experiments to support your usecases and help out in
integration AD in experiment frameworks

* Extend RooFit’s interfaces so it will be easy to get out the generated code and
gradients to use them outside the RooFit minimization routines

* R & D on analytic higher-order derivatives that are used in Minuit

* Implement advanced clad-based analyses to remove the redundant
computation

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT ecosystem
and RooFit benefits from it in many ways:

* Faster likelihood gradients
* No need for tricks to get numerically stable gradients

* Likelihoods can be expressed in plain C++
* Good for understanding the math: optimization gets decoupled from logic - simple code
 Good for collaboration: simple C++ can easily be shared and used in other contexts

Thank you!

