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Motivation

Provide automatic differentiation for C/C++ that works without
little code modification (including legacy code)
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AD Basics



AD. Chain Rule

Intuitively, the chain rule states that knowing the instantaneous rate of change of 
z relative to y and that of y relative to x allows one to calculate the instantaneous 
rate of change of z relative to x as the product of the two rates of change. 

“if a car travels twice as fast as a bicycle and the bicycle is four times as fast as a 
walking man, then the car travels 2 × 4 = 8 times as fast as the man.” G. Simmons
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AD. Algorithm Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy
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In the computational graph each 
node is a variable and each edge is 

derivatives between adjacent edges
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We recursively apply the rules until we encounter an elementary function such as addition, 
substraction, multiplication, division, sin, cos or exp.
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AD. Chain Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)
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AD step-by-step. Forward Mode

dx0dx = {1, 0}
dx1dx = {0, 1}

y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0
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x0
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AD step-by-step. Reverse Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy
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w1
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AD. Cheap Gradient Principle

• The computational graph has common subpaths which can be precomputed
• If a function has a single input parameter, no mater how many output 

parameters, forward mode AD generates a derivative that has the same time 
complexity as the original function
• More importantly, if a function has a single output parameter, no matter how 

many input parameters, reverse mode AD generates derivative with the same 
time complexity as the original function.
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AD. Implementation Approaches

AD tools can be categorized by how much work is done before 
program execution
• Tracing/Operator Overloading/Dynamic Graphs/Taping -- Records 

the linear sequence of computation operations at runtime into a 
tape
• Source Transformation -- Constructs the computation graph and 

produces a derivative at compile time
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Automatic vs Symbolic Differentiation

double f_dx(double x, int N=5) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < N; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥 𝑒*!

!!
"

= 𝑒+,*!
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"
,*!!

"
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// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
  double result = x;
  for (unsigned i = 0; i < N; i++)
    result = std::exp(result);
  return result;
}

𝑓 𝑥 = 𝑒*!
!!
" Symbolic via Wolfram Alpha

Handcode Handcode

AD

Figure out the
 analytical fn
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AD. Gradient Generation

• Control Flow and 
Recursion fall naturally in 
forward mode.
• Extra work is required for 

reverse mode in reverting 
the loop and storing the 
intermediaries in general.

double f_reverse (double x, int N=5) {
 double result = x;
 std::stack<double> results;
 for (unsigned i = 0; i < N; i++) {
  results.push(result);
  result = std::exp(result);
 }
 double d_result = 1;
 for (unsigned i = N; i; i--) {
  d_result *= std::exp(results.top());
  results.pop();
 }
 return d_result;
}
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Clad. Design Principles

• Look Ma’ I can make a compiler generate a derivative!
•Make AD a first-class citizen to a high-performance language such as 

C++
• Support idiomatic C++ (compile-time programming such as constexpr, 

consteval)
• Infrastructure reuse – employ our compiler engineering skills
• Lower contribution entry barrier
• Diagnostics

1416-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation



High-Level Data Flow

• Compiler module, very similar to the template instantiator by idea and design.
• Generates f’ of any given f using source transformation at compile time.

Fn.cxx

lib
Cl

ad
.s

o

clang

FnDerivatives.cxx

Fn.o

libFnDerivatives.so
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Programming Model

16

// clang++ -fplugin libclad.so –Iclad/include ...

// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }
double pow2_darg0(double);

int main() {
auto dfdx = clad::differentiate(pow2, 0);

// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = cladPow2.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = cladPow2.getFunctionPtr();
res = cladPow2FnPtr(2);

// 3) Using direct function access through fwd declaration.
res = pow2_darg0(3);
return 0;

}

The body will be 
generated by Clad

Result via Clad’s 
function-like wrapper

Result via function 
pointer call

Result via function 
forward declaration

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation



Programming Model. Differential Operators
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Clad in High-Energy Physics
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A data analysis 
framework used to 

process EB data



There and Back Again
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Social Engineering, Progress, 
Social Engineering…

In the meanwhile: Cling, 
ROOT6, C++ Modules, IPCC-
ROOT, compiler-research.org, 
Clang-Repl …
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Statistical 
Modelling



1

RooFit represents all mathematical formulae as RooFit objects which 
are then brought together into a compute graph. This compute graph 
makes up a model on which further data analysis is run. 

Gaussian Probability 
Distribution Function (pdf)

//Obj represents f(x) here
RooGaussian obj(x, mu, 
sigma);

Equivalent Code in C++ with RooFit

Programmers/users know this relationship. But 
how do we connect these two together when a 

connection is not obvious in code?

Automatic Differentiation in RooFit

G. Singh
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Image ref:  Automatic Differentiation of Binned Likelihoods With Roofit and Clad - Garima Singh, Jonas Rembser, Lorenzo Moneta, Vassil Vassilev, ACAT 2022

Bottlenecks
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What that we want to differentiate C++ code the AD tool can understandSome way to expose differentiable 
properties of the graph as code.

C++ code the AD tool can 
understand

The AD tool Derivative code of the model!

Automatic Differentiation in RooFit
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What that we want to differentiate C++ code the AD tool can understand

Define 2 Functions in RooFit

void RooGaussian::translate(...) override {

 result = "ADDetail::gauss(" +

                       _x->getResult() +

                       " ," + _mu->getResult() +

                       " ," + _sigma->getResult() + ")";

}

The “glue” function enabling graph squashing.

double ADDetail::gauss(double x, double mean, double sigma) {

const double arg = x - mean;

const double sig = sigma;

return std::exp(-0.5 * arg * arg / (sig * sig));

}

Stateless function enabling differentiation of each class.

Automatic Differentiation in RooFit. Approach
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What that we want to differentiate C++ code the AD tool can understand

Define 2 Functions in RooFit

ADDetail::gauss(x, mu, sig)
The equivalent code generated

RooGaussian::evaluate()
The RooFit call to evaluate a gaussian

ADDetail::gauss(x, mu, sig) / ADDetail::gaussIntegral(...)

The equivalent code generated 
(given the class supports analytical integrals)

- Bookkeeping

& caching

Automatic Differentiation in RooFit. Approach
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C++ code the AD tool can 
understand

The AD tool Derivative code of the model!

What that we want to differentiate C++ code the AD tool can understand

Roo*::translate()

‘Squash’ the graph into code 

Automatic Differentiation in RooFit. Approach
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18x 
Faster!

Tested on ROOT master as of May 2023. 
*Excludes the seed generation time

Basic RooFit Example With Binned Fit of Analytical Shapes
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*Excludes the seed generation time, more info

Link to paper: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

Large Analysis Benchmark Describing Workflows in HEP

N Channels RooFit ND RooFit AD Speedup

1 0.03 0.01 2x

5 1.19 0.26 2.5x

10 2.22 0.36 5.2x

20 7.38 1.17 5.3x

Fitting Time (s)*
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Large Analysis Benchmark Compile Times

Mode JIT gcc10 clang-13

-O0 16s 1.15s 0.82

-O1 17s 4.46s 6.00s

-O2 17s 9.24s 8.57s

-O3 17s 10.69s 8.88s

The generated code is suboptimal for the optimization pipelines.
We know how to fix this.
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Floating Point 
Error Analysis



Floating point errors

0.30000001192092895508 1.19e-08Representation in float:

0.29999999999999998890 1.11e-17Representation in double:

0.3 -Input number:

Value Error

0.60000002384185791016 2.38e-08Representation in float:

0.59999999999999997780 2.22e-17Representation in double:

0.6 -Operation output:

Let’s try a simple addition operation: 0.3 + 0.3

31

Link to code for these numbers
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Classical Formula for Error Estimation
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The general representation of the error estimation formula is:

∆𝑓 ≡+
-./

0
𝜕𝑓
𝜕𝑥-

- 𝑥- - 𝜀1

First order partial derivatives

Input and intermediate 
variables

Machine 
Epsilon

Error in variableDerivative w.r.t that variable

The maximum floating-point error (ℎ!"#) in 𝑥 as allowed by IEEE is  𝑥 3 𝜀$, where 𝜀$ is the machine epsilon.

∆𝑓#≈ 𝑓′(𝑥) 3 𝑥 3 𝜀$ 	

Link to paper: https://arxiv.org/abs/2304.06441
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Clad in FP Error Analysis: CHEF-FP
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CHEF-FP

Error 
Model

Error Estimation Module

Clad InterfaceCode Generator & Emitter
Source Info Capture

Er
ro

r M
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el
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ceDerivative Tracker

∆𝑥	Code

∆𝑥

Code Clang Derivative
code

Clang

𝜕

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
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CHEF-FP Usage

34

double func(double x, double y) {
double z = x + y;
return z;

}

#include “clad/Differentiator/Differentiator.h”
#include “../PrintModel/ErrorFunc.h”

// Call CHEF-FP on the function
auto df = clad::estimate_error(func); 

double x = 1.95e-5, y = 1.37e-7;
double dx = 0, dy = 0;
double fp_error = 0;

df.execute(x,y, &dx, &dy, fp_error);

std::cout << "FP error in func: " << fp_error;
// FP error in func: 8.25584e-13

// Print mixed precision analysis results
clad::printErrorReport();

Ex
ec

ut
e 

th
e 

CH
EF

-F
P 

ob
je

ct
 to

 g
et

 th
e 

er
ro

r

void func_grad(double x, double y,
     clad::array_ref<double> _d_x,
     clad::array_ref<double> _d_y,
     double &_final_error) {
  double _d_z = 0, _delta_z = 0, _EERepl_z0;
  double z = x + y;
  _EERepl_z0 = z;
  double func_return = z;
  _d_z += 1;
  * _d_x += _d_z;
  * _d_y += _d_z;
  _delta_z +=
      clad::getErrorVal(_d_z, _EERepl_z0, "z");
  double _delta_x = 0;
  _delta_x +=
      clad::getErrorVal(* _d_x, x, "x");
  double _delta_y = 0;
  _delta_y +=
      clad::getErrorVal(* _d_y, y, "y");
  _final_error +=
      _delta_y + _delta_x + _delta_z;
}

The function generated by CHEF-FP to estim
ate the errors

USER GENERATED CODE AUTO GENERATED CODE
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Plans

• Grey box AD
• Enhance the pushforward/pullback mechanisms to avoid common AD pitfalls

• Further advancements and applications on floating point error 
estimation
• Controlling the error limits helps the energy efficiency of algorithms

• Robust activity analysis
• A research platform AD in C/C++
• Combines all power of Clang Static Analyzer, LLVM Optimization Passes, Control Flow 

Graphs
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