
Accelerating Large Scientific Workflows Using
Source Transformation Automatic Differentiation

Vassil Vassilev, Princeton
compiler-research.org

This work is partially supported by National Science Foundation under Grant OAC- 2311471,
OAC- 1931408 and NSF (USA) Cooperative Agreement OAC-1836650

https://compiler-research.org/

Motivation

Provide automatic differentiation for C/C++ that works without
little code modification (including legacy code)

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 2

AD Basics

AD. Chain Rule

Intuitively, the chain rule states that knowing the instantaneous rate of change of
z relative to y and that of y relative to x allows one to calculate the instantaneous
rate of change of z relative to x as the product of the two rates of change.

“if a car travels twice as fast as a bicycle and the bicycle is four times as fast as a
walking man, then the car travels 2 × 4 = 8 times as fast as the man.” G. Simmons

4

𝑑𝑧
𝑑𝑥

=
𝑑𝑧
𝑑𝑦

.
𝑑𝑦
𝑑𝑥

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD. Algorithm Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy

𝑑𝑦
𝑑𝑥

𝑑𝑧
𝑑𝑦

In the computational graph each
node is a variable and each edge is

derivatives between adjacent edges

5

We recursively apply the rules until we encounter an elementary function such as addition,
substraction, multiplication, division, sin, cos or exp.

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD. Chain Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

x0

zy

x1

w0

w1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1
zy

w0

w1

x0

x1

𝜕𝑤0
𝜕𝑥0 =

𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤0
𝜕𝑥1 =

𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

𝜕𝑤1
𝜕𝑥0 =

𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤1
𝜕𝑥1 =

𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

616-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD step-by-step. Forward Mode

dx0dx = {1, 0}
dx1dx = {0, 1}

y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0

w1

x0

x1

716-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD step-by-step. Reverse Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy

w0

w1

x0

x1

816-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD. Cheap Gradient Principle

• The computational graph has common subpaths which can be precomputed
• If a function has a single input parameter, no mater how many output

parameters, forward mode AD generates a derivative that has the same time
complexity as the original function
• More importantly, if a function has a single output parameter, no matter how

many input parameters, reverse mode AD generates derivative with the same
time complexity as the original function.

916-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD. Implementation Approaches

AD tools can be categorized by how much work is done before
program execution
• Tracing/Operator Overloading/Dynamic Graphs/Taping -- Records

the linear sequence of computation operations at runtime into a
tape
• Source Transformation -- Constructs the computation graph and

produces a derivative at compile time

1016-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Automatic vs Symbolic Differentiation

double f_dx(double x, int N=5) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < N; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥 𝑒*!

!!
"

= 𝑒+,*!
!!
"
,*!!

"
,*!",*"

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
 double result = x;
 for (unsigned i = 0; i < N; i++)
 result = std::exp(result);
 return result;
}

𝑓 𝑥 = 𝑒*!
!!
" Symbolic via Wolfram Alpha

Handcode Handcode

AD

Figure out the
 analytical fn

316-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

AD. Gradient Generation

• Control Flow and
Recursion fall naturally in
forward mode.
• Extra work is required for

reverse mode in reverting
the loop and storing the
intermediaries in general.

double f_reverse (double x, int N=5) {
 double result = x;
 std::stack<double> results;
 for (unsigned i = 0; i < N; i++) {
 results.push(result);
 result = std::exp(result);
 }
 double d_result = 1;
 for (unsigned i = N; i; i--) {
 d_result *= std::exp(results.top());
 results.pop();
 }
 return d_result;
}

1216-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Clad. Design Principles

• Look Ma’ I can make a compiler generate a derivative!
•Make AD a first-class citizen to a high-performance language such as

C++
• Support idiomatic C++ (compile-time programming such as constexpr,

consteval)
• Infrastructure reuse – employ our compiler engineering skills
• Lower contribution entry barrier
• Diagnostics

1416-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

High-Level Data Flow

• Compiler module, very similar to the template instantiator by idea and design.
• Generates f’ of any given f using source transformation at compile time.

Fn.cxx

lib
Cl

ad
.s

o

clang

FnDerivatives.cxx

Fn.o

libFnDerivatives.so

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 15

Programming Model

16

// clang++ -fplugin libclad.so –Iclad/include ...

// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }
double pow2_darg0(double);

int main() {
auto dfdx = clad::differentiate(pow2, 0);

// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = cladPow2.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = cladPow2.getFunctionPtr();
res = cladPow2FnPtr(2);

// 3) Using direct function access through fwd declaration.
res = pow2_darg0(3);
return 0;

}

The body will be
generated by Clad

Result via Clad’s
function-like wrapper

Result via function
pointer call

Result via function
forward declaration

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Programming Model. Differential Operators

1716-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Clad in High-Energy Physics

1816-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

A data analysis
framework used to

process EB data

There and Back Again

19

Social Engineering, Progress,
Social Engineering…

In the meanwhile: Cling,
ROOT6, C++ Modules, IPCC-
ROOT, compiler-research.org,
Clang-Repl …

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Statistical
Modelling

1

RooFit represents all mathematical formulae as RooFit objects which
are then brought together into a compute graph. This compute graph
makes up a model on which further data analysis is run.

Gaussian Probability
Distribution Function (pdf)

//Obj represents f(x) here
RooGaussian obj(x, mu,
sigma);

Equivalent Code in C++ with RooFit

Programmers/users know this relationship. But
how do we connect these two together when a

connection is not obvious in code?

Automatic Differentiation in RooFit

G. Singh

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic
Differentiation

21

Image ref: Automatic Differentiation of Binned Likelihoods With Roofit and Clad - Garima Singh, Jonas Rembser, Lorenzo Moneta, Vassil Vassilev, ACAT 2022

Bottlenecks

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 22

What that we want to differentiate C++ code the AD tool can understandSome way to expose differentiable
properties of the graph as code.

C++ code the AD tool can
understand

The AD tool Derivative code of the model!

Automatic Differentiation in RooFit

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 23

What that we want to differentiate C++ code the AD tool can understand

Define 2 Functions in RooFit

void RooGaussian::translate(...) override {

 result = "ADDetail::gauss(" +

 _x->getResult() +

 " ," + _mu->getResult() +

 " ," + _sigma->getResult() + ")";

}

The “glue” function enabling graph squashing.

double ADDetail::gauss(double x, double mean, double sigma) {

const double arg = x - mean;

const double sig = sigma;

return std::exp(-0.5 * arg * arg / (sig * sig));

}

Stateless function enabling differentiation of each class.

Automatic Differentiation in RooFit. Approach

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 24

What that we want to differentiate C++ code the AD tool can understand

Define 2 Functions in RooFit

ADDetail::gauss(x, mu, sig)
The equivalent code generated

RooGaussian::evaluate()
The RooFit call to evaluate a gaussian

ADDetail::gauss(x, mu, sig) / ADDetail::gaussIntegral(...)

The equivalent code generated
(given the class supports analytical integrals)

- Bookkeeping

& caching

Automatic Differentiation in RooFit. Approach

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 25

C++ code the AD tool can
understand

The AD tool Derivative code of the model!

What that we want to differentiate C++ code the AD tool can understand

Roo*::translate()

‘Squash’ the graph into code

Automatic Differentiation in RooFit. Approach

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 26

18x
Faster!

Tested on ROOT master as of May 2023.
*Excludes the seed generation time

Basic RooFit Example With Binned Fit of Analytical Shapes

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 27

*Excludes the seed generation time, more info

Link to paper: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

Large Analysis Benchmark Describing Workflows in HEP

N Channels RooFit ND RooFit AD Speedup

1 0.03 0.01 2x

5 1.19 0.26 2.5x

10 2.22 0.36 5.2x

20 7.38 1.17 5.3x

Fitting Time (s)*

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 28

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

Large Analysis Benchmark Compile Times

Mode JIT gcc10 clang-13

-O0 16s 1.15s 0.82

-O1 17s 4.46s 6.00s

-O2 17s 9.24s 8.57s

-O3 17s 10.69s 8.88s

The generated code is suboptimal for the optimization pipelines.
We know how to fix this.

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 29

Floating Point
Error Analysis

Floating point errors

0.30000001192092895508 1.19e-08Representation in float:

0.29999999999999998890 1.11e-17Representation in double:

0.3 -Input number:

Value Error

0.60000002384185791016 2.38e-08Representation in float:

0.59999999999999997780 2.22e-17Representation in double:

0.6 -Operation output:

Let’s try a simple addition operation: 0.3 + 0.3

31

Link to code for these numbers

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

https://godbolt.org/z/fTr5cY338

Classical Formula for Error Estimation

32

The general representation of the error estimation formula is:

∆𝑓 ≡+
-./

0
𝜕𝑓
𝜕𝑥-

- 𝑥- - 𝜀1

First order partial derivatives

Input and intermediate
variables

Machine
Epsilon

Error in variableDerivative w.r.t that variable

The maximum floating-point error (ℎ!"#) in 𝑥 as allowed by IEEE is 𝑥 3 𝜀$, where 𝜀$ is the machine epsilon.

∆𝑓#≈ 𝑓′(𝑥) 3 𝑥 3 𝜀$ 	

Link to paper: https://arxiv.org/abs/2304.06441
16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

https://arxiv.org/abs/2304.06441

Clad in FP Error Analysis: CHEF-FP

33

CHEF-FP

Error
Model

Error Estimation Module

Clad InterfaceCode Generator & Emitter
Source Info Capture

Er
ro

r M
od

el

In
te

rfa
ceDerivative Tracker

∆𝑥	Code

∆𝑥

Code Clang Derivative
code

Clang

𝜕

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

CHEF-FP Usage

34

double func(double x, double y) {
double z = x + y;
return z;

}

#include “clad/Differentiator/Differentiator.h”
#include “../PrintModel/ErrorFunc.h”

// Call CHEF-FP on the function
auto df = clad::estimate_error(func);

double x = 1.95e-5, y = 1.37e-7;
double dx = 0, dy = 0;
double fp_error = 0;

df.execute(x,y, &dx, &dy, fp_error);

std::cout << "FP error in func: " << fp_error;
// FP error in func: 8.25584e-13

// Print mixed precision analysis results
clad::printErrorReport();

Ex
ec

ut
e

th
e

CH
EF

-F
P

ob
je

ct
 to

 g
et

 th
e

er
ro

r

void func_grad(double x, double y,
 clad::array_ref<double> _d_x,
 clad::array_ref<double> _d_y,
 double &_final_error) {
 double _d_z = 0, _delta_z = 0, _EERepl_z0;
 double z = x + y;
 _EERepl_z0 = z;
 double func_return = z;
 _d_z += 1;
 * _d_x += _d_z;
 * _d_y += _d_z;
 _delta_z +=
 clad::getErrorVal(_d_z, _EERepl_z0, "z");
 double _delta_x = 0;
 _delta_x +=
 clad::getErrorVal(* _d_x, x, "x");
 double _delta_y = 0;
 _delta_y +=
 clad::getErrorVal(* _d_y, y, "y");
 _final_error +=
 _delta_y + _delta_x + _delta_z;
}

The function generated by CHEF-FP to estim
ate the errors

USER GENERATED CODE AUTO GENERATED CODE
16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Plans

• Grey box AD
• Enhance the pushforward/pullback mechanisms to avoid common AD pitfalls

• Further advancements and applications on floating point error
estimation
• Controlling the error limits helps the energy efficiency of algorithms

• Robust activity analysis
• A research platform AD in C/C++
• Combines all power of Clang Static Analyzer, LLVM Optimization Passes, Control Flow

Graphs

16-Aug-2023 V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation 35

Thank you!

Alexander Penev
Conception,
CMake, Demos,
Jupyter

Aleksandr Efremov
Reverse Mode

Roman Shakhov
Jacobians

Martin Vassilev
Forward Mode,
CodeGen

Violeta Ilieva
Initial prototype,
Forward Mode

Vassil Vassilev
Conception,
Mentoring, Bugs,
Integration,
Infrastructure

Jack Qui
Hessians

Oksana Shadura
Infrastructure,
Co-mentoring

Pratyush Das
Infrastructure

Garima Singh
FP error
estimation,
RooFit, Bugs

Ioana Ifrim
CUDA AD

Parth Arora
Initial support
classes, functors,
pullbacks

Baidyanath Kundu
Array Support,
ROOT integration

Vaibhav Thakkar
Forward Vector Mode

