Efficient C++ Derivatives Through Source Transformation AD With Clad

Vassil Vassilev, Princeton
compiler-research.org

This work is partially supported by National Science Foundation under Grant OAC-1931408
Motivation

Provide automatic differentiation for C/C++ that works without little code modification (including legacy code)
AD. Chain Rule

\[
\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}
\]

Intuitively, the chain rule states that knowing the instantaneous rate of change of \(z \) relative to \(y \) and that of \(y \) relative to \(x \) allows one to calculate the instantaneous rate of change of \(z \) relative to \(x \) as the product of the two rates of change.

“if a car travels twice as fast as a bicycle and the bicycle is four times as fast as a walking man, then the car travels \(2 \times 4 = 8 \) times as fast as the man.” G. Simmons
AD. Algorithm Decomposition

\[y = f(x) \]
\[z = g(y) \]

\[\frac{dy}{dx} = \frac{df}{dx}(x) \]
\[\frac{dz}{dy} = \frac{dg}{dy}(y) \]
\[\frac{dz}{dx} = \frac{dz}{dy} \times \frac{dy}{dx} \]

We recursively apply the rules until we encounter an elementary function such as addition, substraction, multiplication, division, sin, cos or exp.
AD. Chain Rule

\[y = f(x_0, x_1) \]
\[z = g(y) \]
\[w_0, w_1 = l(z) \]

\[\frac{\partial w_0}{\partial x_0} = \frac{\partial w_0}{\partial z} \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_0} \]
\[\frac{\partial w_0}{\partial x_1} = \frac{\partial w_0}{\partial z} \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_1} \]
\[\frac{\partial w_1}{\partial x_0} = \frac{\partial w_1}{\partial z} \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_0} \]
\[\frac{\partial w_1}{\partial x_1} = \frac{\partial w_1}{\partial z} \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_1} \]
AD step-by-step. Forward Mode

\[
\begin{align*}
dx0dx &= \{1, 0\} \\
dx1dx &= \{0, 1\} \\
y &= f(x0, x1) \\
dydx &= df(x0, dx0dx, x1, dx1dx) \\
z &= g(y) \\
dzdx &= dg(y, dydx) \\
w0, w1 &= l(z) \\
dw0dx, dw1dx &= dl(z, dzdx)
\end{align*}
\]
AD step-by-step. Reverse Mode

\[y = f(x_0, x_1) \]
\[z = g(y) \]
\[w_0, w_1 = l(z) \]
\[dwdw_0 = \{1, 0\} \]
\[dwdw_1 = \{0, 1\} \]
\[dwdz = dl(dwdw_0, dwdw_1) \]
\[dwdy = dg(y, dwdz) \]
\[dwx_0, dwx_1 = df(x_0, x_1, dwdy) \]
AD. Cheap Gradient Principle

• The computational graph has **common subpaths** which can be precomputed.

• If a function has a single input parameter, no matter how many output parameters, **forward mode** AD generates a **derivative** that has the **same time complexity** as the original function.

• More importantly, if a function has a **single output** parameter, **no matter how many input** parameters, reverse mode AD generates **derivative** with the **same time complexity** as the original function.
AD. Implementation Approaches

AD tools can be categorized by how much work is done before program execution

- **Tracing/Operator Overloading/Dynamic Graphs/Taping** -- Records the linear sequence of computation operations at runtime into a tape
- **Source Transformation** -- Constructs the computation graph and produces a derivative at compile time
Automatic vs Symbolic Differentiation

\[f(x) = e^{e^{e^{e^x}}} \]

Symbolic via Wolfram Alpha

\[\frac{d}{dx} \left(e^{e^{e^{e^x}}} \right) = e^x + e^{e^x} + e^{e^x} + e^x + 1 \]

Double-precision AD

```cpp
#include <cmath>

double f(double x) {
    double result = x;
    for (unsigned i = 0; i < 5; i++)
        result = std::exp(result);
    return result;
}

double f_dx(double x) {
    double result = x;
    double d_result = 1;
    for (unsigned i = 0; i < 5; i++)
        d_result *= std::exp(result);
    return d_result;
}
```
AD. Gradient Generation

• Control Flow and Recursion fall naturally in forward mode.

• Extra work is required for reverse mode in reverting the loop and storing the intermediaries in general.

```c++
double f_reverse (double x) {
    double result = x;
    std::stack<double> results;
    for (unsigned i = 0; i < 5; i++) {
        results.push(result);
        result = std::exp(result);
    }
    double d_result = 1;
    for (unsigned i = 5; i; i--) {
        d_result *= std::exp(results.top());
        results.pop();
    }
    return d_result;
}
```
Clad. Design Principles

• Look Ma’ I can make a compiler generate a derivative!
• Make AD a first-class citizen to a high-performance language such as C++
• Support idiomatic C++ (compile-time programming such as constexpr, consteval)
• Infrastructure reuse – employ our compiler engineering skills
• Lower contribution entry barrier
• Diagnostics
High-Level Data Flow

- Compiler module, very similar to the template instantiator by idea and design.
- Generates f' of any given f using source transformation at compile time.
Programming Model

// clang++ -fplugin libclad.so -Iclad/include ...

// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"

double pow2(double x) { return x * x; }
double pow2_darg0(double);

int main() {
 auto dfdx = clad::differentiate(pow2, 0);

 // Function execution can happen in 3 ways:
 // 1) Using CladFunction::execute method.
 double res = cladPow2.execute(1);

 // 2) Using the function pointer.
 auto dfdxFnPtr = cladPow2.getFunctionPtr();
 res = cladPow2FnPtr(2);

 // 3) Using direct function access through fwd declaration.
 res = pow2_darg0(3);
 return 0;
}
Programming Model. Differential Operators

User-defined substitution

```cpp
// MyCode.h
float custom_fn(float x);

namespace custom_derivatives {
  float custom_fn_dx(float x) {
    return x * x;
  }
}

float do_smth(float x) {
  return x * x + custom_fn(x);
}

int main() {
  clad::differentiate(do_smth, 0).execute(2); // will return 6
  return 0;
}
```

```cpp
template <typename T1, typename T2>
CUDA_HOST_DEVICE ValueAndPushforward<decltype(decltype::std::pow(T1(), T2()))>,
  decltype(decltype::std::pow(T1(), T2()))>
pow_pushforward(T1 x, T2 exponent, T1 d_x, T2 d_exponent) {
  auto val = ::std::pow(x, exponent);
  auto derivative = (exponent * ::std::pow(x, exponent - 1)) * d_x;
  // Only add directional derivative of base^exp w.r.t exp if the directional
  // seed d_exponent is non-zero. This is required because if base is less than or
  // equal to 0, then log(base) is undefined, and therefore if user only requested
  // directional derivative of base^exp w.r.t base -- which is valid --, the result would
  // be undefined because as per C++ valid number + NaN * 0 = NaN.
  if (d_exponent)
    derivative += (::std::pow(x, exponent) * ::std::log(x)) * d_exponent;
  return {val, derivative};
}
```
Clad in High-Energy Physics

Clad is available in ROOT:

```cpp
TF1* h1 = new TF1("f1", "formula");
TFormula* f1 = h1->GetFormula();
f1->GenerateGradientPar(); // clad

// clad
f1->GradientPar(x, result);
// numerical
h1->GradientPar(x, result);
```

gaus: Npar = 3, expo: Npar = 2, crystalball: Npar = 5, breitwigner: Npar = 5, cheb2: Npar = 4

25-July-2023
V. Vassilev -- Efficient C++ Derivatives Through Source Transformation AD With Clad – The 3rd MODE Workshop
Clad in FP Error Analysis: CHEF-FP

25-July-2023

V. Vassilev -- Efficient C++ Derivatives Through Source Transformation AD With Clad – The 3rd MODE Workshop
There and Back Again

Social Engineering, Progress, Social Engineering...

In the meanwhile: Cling, ROOT6, C++ Modules, IPCC-ROOT, compiler-research.org, Clang-Repl ...
Future Prospects

• Grey box AD
 • Enhance the pushforward/pullback mechanisms to avoid common AD pitfalls

• Further advancements and applications on floating point error estimation
 • Controlling the error limits helps the energy efficiency of algorithms

• Robust activity analysis

• A research platform AD in C/C++
 • Combines all power of Clang Static Analyzer, LLVM Optimization Passes, Control Flow Graphs
Thank you!