
Efficient	C++	Derivatives	Through	
Source	Transformation	AD	With	Clad

Vassil	Vassilev,	Princeton
compiler-research.org

This	work	is	partially	supported	by	National	Science	Foundation	under	Grant	OAC-1931408



Motivation

Provide	automatic	differentiation	for	C/C++	that	works	without
little	code	modification	(including	legacy	code)

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop 2



AD.	Chain	Rule

Intuitively,	the	chain	rule	states	that	knowing	the	instantaneous	rate	of	change	of	
z relative	to	y and	that	of	y relative	to	x allows	one	to	calculate	the	instantaneous	
rate	of	change	of	z relative	to	x as	the	product	of	the	two	rates	of	change.	

“if	a	car	travels	twice	as	fast	as	a	bicycle	and	the	bicycle	is	four	times	as	fast	as	a	
walking	man,	then	the	car	travels	2	× 4	=	8	times	as	fast	as	the	man.”	G.	Simmons

3

𝑑𝑧
𝑑𝑥

=
𝑑𝑧
𝑑𝑦

.
𝑑𝑦
𝑑𝑥

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD.	Algorithm	Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy

𝑑𝑦
𝑑𝑥

𝑑𝑧
𝑑𝑦

In	the	computational	graph	each	
node	is	a	variable	and	each	edge	is	
derivatives	between	adjacent	edges

4

We	recursively	apply	the	rules	until	we	encounter	an	elementary	function	such	as	addition,	
substraction,	multiplication,	division,	sin,	cos	or	exp.

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD.	Chain	Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

x0

zy

x1

w0

w1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1
zy

w0

w1

x0

x1

𝜕𝑤0
𝜕𝑥0

=
𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤0
𝜕𝑥1

=
𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

𝜕𝑤1
𝜕𝑥0

=
𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤1
𝜕𝑥1

=
𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

525-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD	step-by-step.	Forward	Mode

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0

w1

x0

x1

625-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD	step-by-step.	Reverse	Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy

w0

w1

x0

x1

725-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD.	Cheap	Gradient	Principle

• The	computational	graph	has	common	subpaths which	can	be	precomputed
• If	a	function	has	a	single	input	parameter,	no	mater	how	many	output	
parameters,	forward	mode	AD	generates	a	derivative that	has	the	same	time	
complexity	as	the	original	function

• More	importantly,	if	a	function	has	a	single	output	parameter,	no	matter	how	
many	input parameters,	reverse	mode	AD	generates	derivative with	the	same	
time	complexity	as	the	original	function.

825-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD.	Implementation	Approaches

AD	tools	can	be	categorized	by	how	much	work	is	done	before	
program	execution

• Tracing/Operator	Overloading/Dynamic	Graphs/Taping	-- Records	
the	linear	sequence	of	computation	operations	at	runtime	into	a	
tape

• Source	Transformation	-- Constructs	the	computation	graph	and	
produces	a	derivative	at	compile	time

25-July-2023 9V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



Automatic	vs	Symbolic	Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥

𝑒,-
--
.

= 𝑒/0,-
--
.
0,--

.
0,-.0,.

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
double result = x;
for (unsigned i = 0; i < 5; i++)
result = std::exp(result);

return result;
}

𝑓 𝑥 = 𝑒,-
--
. Symbolic	via	Wolfram	Alpha

Handcode Handcode

AD

Figure	out	the
analytical	fn

325-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



AD.	Gradient	Generation

• Control	Flow	and	
Recursion	fall	naturally	in	
forward	mode.

• Extra	work	is	required	for	
reverse	mode	in	reverting	
the	loop	and	storing	the	
intermediaries	in	general.

double f_reverse (double x) {
double result = x;
std::stack<double> results;
for (unsigned i = 0; i < 5; i++) {
results.push(result);
result = std::exp(result);

}
double d_result = 1;
for (unsigned i = 5; i; i--) {
d_result *= std::exp(results.top());
results.pop();

}
return d_result;

}

1125-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



Clad.	Design	Principles

• Look	Ma’	I	can	make	a	compiler	generate	a	derivative!
• Make	AD	a	first-class	citizen	to	a	high-performance	language	such	as	
C++

• Support	idiomatic	C++	(compile-time	programming	such	as	constexpr,	
consteval)

• Infrastructure	reuse	– employ	our	compiler	engineering	skills
• Lower	contribution	entry	barrier
• Diagnostics

1225-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



High-Level	Data	Flow

• Compiler	module,	very	similar	to	the	template	instantiator by	idea	and	design.
• Generates	f’	of	any	given	f	using	source	transformation	at	compile	time.

13

Fn.cxx

lib
Cl
ad
.s
o

clang

FnDerivatives.cxx

Fn.o

libFnDerivatives.so

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



Programming	Model

14

// clang++ -fplugin libclad.so –Iclad/include ...

// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }
double pow2_darg0(double);

int main() {
auto dfdx = clad::differentiate(pow2, 0);

// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = cladPow2.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = cladPow2.getFunctionPtr();
res = cladPow2FnPtr(2);

// 3) Using direct function access through fwd declaration.
res = pow2_darg0(3);
return 0;

}

The	body	will	be	
generated	by	Clad

Result	via	Clad’s
function-like	wrapper

Result	via	function	
pointer	call

Result	via	function	
forward	declaration

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



Programming	Model.	Differential	Operators

25-July-2023 V.	Vassilev	-- Clad	&	C++ 15



Clad	in	High-Energy	Physics

16

TF1* h1 = new TF1(“f1”, “formula”);
TFormula* f1 = h1->GetFormula();
f1->GenerateGradientPar(); // clad

Clad	is	available	in	ROOT:

// clad
f1->GradientPar(x, result);
// numerical
h1->GradientPar(x, result);

gaus: Npar = 3,expo: Npar = 2, crystalball: Npar = 5, breitwigner: Npar = 5, cheb2: Npar = 4

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



Clad	in	FP	Error	Analysis:	CHEF-FP

17

CHEF-FP

Error 
Model

Error Estimation Module

Clad InterfaceCode Generator & Emitter
Source Info Capture

Er
ro

r M
od

el
 

In
te

rf
ac

eDerivative Tracker

∆𝑥	Code

∆𝑥

Code Clang Derivative
code

Clang

𝜕

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop



There	and	Back	Again

18

Social	Engineering,	Progress,	
Social	Engineering…

25-July-2023 V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop

In	the	meanwhile:	Cling,	
ROOT6,	C++	Modules,	IPCC-
ROOT,	compiler-research.org,	
Clang-Repl …



19

Future	Prospects

V.	Vassilev -- Efficient	C++	Derivatives	Through	Source	Transformation	AD	With	Clad	– The	3rd MODE	Workshop25-July-2023

• Grey	box	AD
• Enhance	the	pushforward/pullback	mechanisms	to	avoid	common	AD	pitfalls

• Further	advancements	and	applications	on	floating	point	error	
estimation

• Controlling	the	error	limits	helps	the	energy	efficiency	of	algorithms

• Robust	activity	analysis
• A	research	platform	AD	in	C/C++

• Combines	all	power	of	Clang	Static	Analyzer,	LLVM	Optimization	Passes,	Control	Flow	
Graphs



Thank	you!
20

Alexander Penev
Conception, 
CMake, Demos, 
Jupyter

Aleksandr Efremov
Reverse Mode

Roman Shakhov
Jacobians

Martin Vassilev
Forward Mode, 
CodeGen

Violeta Ilieva
Initial prototype, 
Forward Mode

Vassil Vassilev
Conception, 
Mentoring, Bugs, 
Integration, 
Infrastructure

Jack Qui
Hessians

Oksana Shadura
Infrastructure, 
Co-mentoring

Pratyush Das
Infrastructure

Garima Singh
FP error 
estimation, 
RooFit, Bugs

Ioana Ifrim
CUDA AD

Parth Arora
Initial support 
classes, functors, 
pullbacks

Baidyanath Kundu
Array Support, 
ROOT integration

Vaibhav Thakkar
Forward Vector Mode


