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Motivation

Provide	automatic	differentiation	for	C/C++	that	works	without
little	code	modification	(including	legacy	code)
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AD.	Chain	Rule

Intuitively,	the	chain	rule	states	that	knowing	the	instantaneous	rate	of	change	of	
z relative	to	y and	that	of	y relative	to	x allows	one	to	calculate	the	instantaneous	
rate	of	change	of	z relative	to	x as	the	product	of	the	two	rates	of	change.	

“if	a	car	travels	twice	as	fast	as	a	bicycle	and	the	bicycle	is	four	times	as	fast	as	a	
walking	man,	then	the	car	travels	2	× 4	=	8	times	as	fast	as	the	man.”	G.	Simmons
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AD.	Algorithm	Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx
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In	the	computational	graph	each	
node	is	a	variable	and	each	edge	is	
derivatives	between	adjacent	edges
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We	recursively	apply	the	rules	until	we	encounter	an	elementary	function	such	as	addition,	
substraction,	multiplication,	division,	sin,	cos	or	exp.
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AD.	Chain	Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)
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AD	step-by-step.	Forward	Mode

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)
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AD	step-by-step.	Reverse	Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)
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AD.	Cheap	Gradient	Principle

• The	computational	graph	has	common	subpaths which	can	be	precomputed
• If	a	function	has	a	single	input	parameter,	no	mater	how	many	output	
parameters,	forward	mode	AD	generates	a	derivative that	has	the	same	time	
complexity	as	the	original	function

• More	importantly,	if	a	function	has	a	single	output	parameter,	no	matter	how	
many	input parameters,	reverse	mode	AD	generates	derivative with	the	same	
time	complexity	as	the	original	function.
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AD.	Implementation	Approaches

AD	tools	can	be	categorized	by	how	much	work	is	done	before	
program	execution

• Tracing/Operator	Overloading/Dynamic	Graphs/Taping	-- Records	
the	linear	sequence	of	computation	operations	at	runtime	into	a	
tape

• Source	Transformation	-- Constructs	the	computation	graph	and	
produces	a	derivative	at	compile	time
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Automatic	vs	Symbolic	Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}
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// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
double result = x;
for (unsigned i = 0; i < 5; i++)
result = std::exp(result);

return result;
}

𝑓 𝑥 = 𝑒,-
--
. Symbolic	via	Wolfram	Alpha

Handcode Handcode

AD

Figure	out	the
analytical	fn
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AD.	Gradient	Generation

• Control	Flow	and	
Recursion	fall	naturally	in	
forward	mode.

• Extra	work	is	required	for	
reverse	mode	in	reverting	
the	loop	and	storing	the	
intermediaries	in	general.

double f_reverse (double x) {
double result = x;
std::stack<double> results;
for (unsigned i = 0; i < 5; i++) {
results.push(result);
result = std::exp(result);

}
double d_result = 1;
for (unsigned i = 5; i; i--) {
d_result *= std::exp(results.top());
results.pop();

}
return d_result;

}
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Clad.	Design	Principles

• Look	Ma’	I	can	make	a	compiler	generate	a	derivative!
• Make	AD	a	first-class	citizen	to	a	high-performance	language	such	as	
C++

• Support	idiomatic	C++	(compile-time	programming	such	as	constexpr,	
consteval)

• Infrastructure	reuse	– employ	our	compiler	engineering	skills
• Lower	contribution	entry	barrier
• Diagnostics
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High-Level	Data	Flow

• Compiler	module,	very	similar	to	the	template	instantiator by	idea	and	design.
• Generates	f’	of	any	given	f	using	source	transformation	at	compile	time.
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Programming	Model
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// clang++ -fplugin libclad.so –Iclad/include ...

// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }
double pow2_darg0(double);

int main() {
auto dfdx = clad::differentiate(pow2, 0);

// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = cladPow2.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = cladPow2.getFunctionPtr();
res = cladPow2FnPtr(2);

// 3) Using direct function access through fwd declaration.
res = pow2_darg0(3);
return 0;

}

The	body	will	be	
generated	by	Clad

Result	via	Clad’s
function-like	wrapper

Result	via	function	
pointer	call

Result	via	function	
forward	declaration
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Programming	Model.	Differential	Operators
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Clad	in	High-Energy	Physics
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TF1* h1 = new TF1(“f1”, “formula”);
TFormula* f1 = h1->GetFormula();
f1->GenerateGradientPar(); // clad

Clad	is	available	in	ROOT:

// clad
f1->GradientPar(x, result);
// numerical
h1->GradientPar(x, result);

gaus: Npar = 3,expo: Npar = 2, crystalball: Npar = 5, breitwigner: Npar = 5, cheb2: Npar = 4
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Clad	in	FP	Error	Analysis:	CHEF-FP
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There	and	Back	Again
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Social	Engineering,	Progress,	
Social	Engineering…
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In	the	meanwhile:	Cling,	
ROOT6,	C++	Modules,	IPCC-
ROOT,	compiler-research.org,	
Clang-Repl …
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Future	Prospects
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• Grey	box	AD
• Enhance	the	pushforward/pullback	mechanisms	to	avoid	common	AD	pitfalls

• Further	advancements	and	applications	on	floating	point	error	
estimation

• Controlling	the	error	limits	helps	the	energy	efficiency	of	algorithms

• Robust	activity	analysis
• A	research	platform	AD	in	C/C++

• Combines	all	power	of	Clang	Static	Analyzer,	LLVM	Optimization	Passes,	Control	Flow	
Graphs



Thank	you!
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