The current work is partially supported by National Science Foundation under Grant OAC-1931408. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the authors and do not | A
necessarily reflect the views of the National Science Foundation.

-

=5 e , ‘BN | L5 $

- ’{-‘ 2 :' " 7' ‘ = f

S il A - -y
’l‘ — — l?' : - s /AL .

el o S T %mvﬁiff

A . SN B g VT = gty

)
“of [a
| ‘. ’gﬁ
S

e -
- g
o ” :

7

Unlocking the Power of C++ as a Service:

Uniting Python's Usability with C++'s Performance

Vassil Vassilev, compiler-research.org

12.10.2023

http://compiler-research.org

Motivation

[s there a way to combine the expressiveness of Python and the
power of C++ without creating a new programming language?

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

Leverage the exploratory programming infrastructure
developed in the field of high energy physics and
make it available to other scientific domains via LLVM
and open source.

In-"Tree Support for Incremental Compilation

With Clang-Repl

Support For Incremental Compilation

[llvm-dev] [RFC] Moving (parts of) the Cling REPL in Clang

Vassil Vassilev via llvm-dev |
Thu Jul 9 13:46:00 PDT 2020

lvm-dev at lists.llvm.org

¢ Previous message: [llvm-dev] New experimental LI.VM project for validation of LLLVM packaging
e Next message: [llvm-dev] [cfe-dev] [REC] Moving (parts of) the Cling REPL in Clang
* Messages sorted by: [date | [thread | [subject] [author]

Motivation

¢ ¢ Over the last decade we have developed an interactive, interpretative
POSltlve OUtCOI I le Or Our LL -\/ M C++ (aka REPL) as part of the high-energy physics (HEP) data analysis
project —— ROOT [1-2]. We invested a significant effort to replace the
CINT C++ interpreter with a newly implemented REPL based on llvm —-
cling [3]. The cling infrastructure is a core component of the data

[J [J
analysis framework of ROOT and runs in production for approximately 5
community reachout. Adapting ° presinatel
o o o Cling is also a standalone tool, which has a growing community outside
1 LL‘ 7 M f t t t t d of our field. Cling’s user community includes users in finance, biology
maln lne ln raS ruc ure S ar e and in a few companies with proprietary software. For example, there is
a xeus-cling jupyter kernel [4]. One of the major challenges we face to
foster that community is our cling-related patches in llvm and clang
forks. The benefits of using the LLVM community standards for code
S Ort y a ter. reviews, release cycles and integration has been mentioned a number of

times by our "external" users.

Last year we were awarded an NSF grant to improve cling's sustainability
and make it a standalone tool. We thank the LLVM Foundation Board for
supporting us with a non-binding letter of collaboration which was
essential for getting this grant.

Background

Cling is a C++ interpreter built on top of clang and llvm. In a
nutshell, it uses clang's incremental compilation facilities to process
code chunk-by-chunk by assuming an ever-growing translation unit [5].
Then code is lowered into llvm IR and run by the llvm jit. Cling has

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 5

Support For Incremental Compilation. Clang-Repl

[nitial version of the incremental
compilation infrastructure landed in
LLVM and was released in LLVM 13.
Gradual improvements in every
release.

Since LLVM 13, approximately 30
developers have contributed in that
area.

O llvm / llvm-project

> Code (*) Issues 5k+ i9 Pull requests 392 (») Actions () Security [~ Ins

Commit

[clang-repl] Land initial infrastructure for incremental parsing

In http://lists. llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in 1lvm mainline.

This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:

./bin/clang-repl

clang-repl> int i = 42;

clang-repl> extern "C" int printf(const charx,...);
clang-repl> auto rl = printf("i=%d\n", i);

i=42

clang-repl> quit

The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 6

Clang-Repl Helped Upstreaming Tech. Debt

Clang-Repl provided an environment which helps explain and test

the custom patches developed in the domain of High-Energy Physics
(HEP). Most patches are released via LLVM17.

+* During the project we have upstreamed the essential patches
relevant for incremental compilation

+ That lead to faster llvm upgrade cycles in HEP. Time for upgrades
went down from approximately 1 year (llvm5->llvm9) to several
months from (lvm9->llvim13) to several weeks (Ilvm13->1lvm16).

J. Hahnfeld

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 7

Developments Related to Clang-Repl (1)

Clang-Repl drove several new developments:

+ Automatic completion at the prompt improving the overall user
user experience (will be released in LLVM18). See F. Fu’s student
talk later today.

+ Implement shared memory manager for JITLink enabling efficient
out-of-process execution to improve system stability (LLVM15)

* Program reoptimization. See S. Kim's talk from yesterday.

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 8

Developments Related to Clang-Repl (2)

JITLink is a library for JIT Linking. That is a component enabling re-
use of LLVM as an in-memory compiler by adding an in-memory 1
link step to the end of the usual compiler pipeline. L

+ Develop Windows Support (COFF in LLVM16) S. Kim
+* Develop ARM64 Unix Support (Aarch64 in LLVM16)

+ Develop ARM32 Unix Support based on our ARM64
infrastructure — external contribution

+ Develop RISCV JIT Support (LLVM16)

+ Develop PowerPC Support (ppc64 in LLVM18) — contributed N
by IBM /Sycomp J. Hahnfeld

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 9

https://llvm.org/docs/JITLink.html#jit-linking

Interactive CUDA Support

O llvm / llvm-project

Implemented q nOvel approaCh 1n <> Code (%) Issues 5k+ 10 Pull requests
interpreting CUDA codes where the
PTX is passed through the virtual file

SYStem (LLVMl 7) x [clang-repl][CUDA] Initial interactive CUDA support for

CUDA support can be enabled in clang-repl with —--cuda flac
Device code linking is not yet supported. inline must be
__device functions.

407 (») Action

Commit

The CUDA engine in Clang-Repl

helped discover issues in the .
mainStream CUDA Supp()rt j_n Clang. > livmorg-18-init ... llvmorg-17.0.0-rc1

" argentite committed on May 20

Differential Revision: https://reviews. llvm.org/D146389

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 10

Automatic Language Interoperability

Interoperable, Interactive C++ 1n Jupyter

-
Crossing the

language barrier
IS expensive

&

" Our Compiler-
As-A-Service
Approach solves

_ that)

LLVM Dev Meeting, Oct, 2023

struct S { double val = 1.; };

from libInterop import std
python_vec = std.vector(S) (1)

print(python_vec[@].val)

1

class Derived(S)
def init_ (self):
self.val = 0
res = Derived()

__global__ void sum_array(int n, double *x, double *sum) {
for (int 1 = 0; i < n; i++) *sum += x[i];

}

// Init N=1IM and x[i] = 1.f. Run kernel on 1M elements on the GPU.
sum_array<<<l, 1>>>(N, x, &res.val);

compiler-research.org’s Compiler-As-A-Service Project Final Goal. Shown in the live demo.

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

12

Clang-Repl in Data Science With Xeus

Xeus is a protocol that enables executors to connect to the Jupyter A. Penev
infrastructure:

+ Xeus-Clang-Repl enables incremental C++ with interoperability
extensions in Jupyter by implementing the Xeus kernel protocol

4

S. Corlay

I. Ifrim

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 13

https://xeus.readthedocs.io/en/latest/
https://github.com/compiler-research/xeus-clang-repl

Automatic Language InterOp With Python

CPPYY is A CPython/PyPy Extension using their C API. It offers
automatic, on-demand mapping of Python to C++ concepts

Every unsuccessful lookup can be
completed by a C++ entity connected
to a python class wrapper.

val = std.vector[int]((1,2,3))

While parsing we can associate each construct with a C++ entity. The approach does
not require the project maintainer to bother providing static bindings

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 14

https://cppyy.readthedocs.io/en/latest/

Moving CPPYY to LILVM Orbit With CpplnterOp

B. Kundu

Provides interoperability primitives for C++ to enable crosstalk in
automatic way with Python but also for D, Julia. The library allows
replacing the cppyy backend with a specialized and more robust
InterOp, moving it closer to LLVM orbit to allow.

— O compiler-research /| CpplinterOp

<> Code () Issues 5 19 Pullrequests 7 ©J) Disc

ITl CppinterOp Public

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 15

Tutorals & Community Outreach

https:/ / github.com / compiler-research / pldi-tutorials-2023

https:/ / compiler-research.org / vacancies /

C Ommunlt}] O utre aCh https: / / compiler-research.org /team /

https:/ / compiler-research.org /meetings /

+ Open, Virtual Weekly Team Meetings
+ Open, Virtual Monthly Meetings

+ 13 invited talks by speakers from institutions such as Apple, HZDR,
QuantStack, Max-Planck, LBL, CERN and EA

+ Student mentoring
+ 2 Unpaid Contributors
+ 2 CERN Interns
+ 4 IRIS-HEP Fellows
+ 15 Google Summer of Code

+ 3 Technical Documentation Writers via Google Season of Docs

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 17

https://compiler-research.org/vacancies/
https://compiler-research.org/meetings/
https://compiler-research.org/team/

Compiler (C++) As A Service

defer

Static Compiler In-Process Compiler As A Service

-
8 'f:.; More in S. Kim’s talk, yesterday
E 9 Automatic program reoptimization
7 > support in LLVM ORC JIT
= -
S (=
ot 0

Ahead of Time ,Just-in-Time Continuous Optimization

(LLVM’s OrcV2)

-
©
S
S
O
©
S
S
Q
!
!
!
!
!
!
|
!

develop deploy | start | execute

optimize

Abstract machine Target machine

Abstract user Concrete user(s)

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 18

Future Work

The funding period is finished but we have plenty of interesting things to
pursue in this area:

+ Continue the open meetings policy
+ Continue bug fixing and stabilizing Clang-Repl
+ Continue developing tutorials

+ Reach out to other scientific domains to inform their communities for the
new possibilities oftered by our innovative software stack!

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

19

Hy 0
VL=,

-

] T

LIVG DemO https:/ / youtu.be /be89sFOWLrc

Demo: Project Motivation Mockup

In [1]: struct S { double val = 1.; };

LA,

In [2]: from libInterop import std
python_vec = std.vector(S) (1)

* C++: Create a C++ Struct 'S

In [3]: print(python_vec[@].val) P
+ Python: Create a wrapper class 1 .
In [4]: class Derived(S)

In [5]: __global__ void sum_array(int n, double xx, double xsum) { £

over std::vector instantiated with def _init_(sel);
for (int i = 0; i < n; i++) *xsum += x[i]:

res = Derived()
\S\
¥

< PYthOn: Print the Value Of \S\ // Init N=1IM and x[i] = 1.f. Run kernel on 1M elements on the GPU.

sum_array<<<l, 1>>>(N, x, &res.val);

+ Python: Derive from S’

* CUDA: Perform a sum over array
and record the result into res.

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 21

Demo: OpenMP Hello World

M. Vassilev

* Run OpenMP codes in Jupyter

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 22

Demo: Image Processing. Mixing Python/C++/CUDA

Use Pillow and NumPy interactively with C++ and
CUDA execution

+ CUDA: Apply underexposure to pixels based on a
threshold value

+ (C++: Data conversion
+ Python: Plotting

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

Demo: Kalman Filter. Mixing Python/C++/CUDA

n = 8.10m ——\/_\

rpee ¥> = 6.40 m

Use PyYaml and Matplotlib interactively with C++
and CUDA execution

+ CUDA: Compute fast matrix and vector operations

* (C++: Set of efficient CUDA function abstractions

+ Python: Data processing and plotting

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

A Note of Gratitude

This multiyear, multi person effort would not have been possible without
YOU!

The compiler-research team would like to express its deepest gratitude to the
various people who contributed intellectual work in the area over the years!

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

25

Thank you!

Exploratory programming with (+-

(GaaS. Programming Model

// caas-demo.cpp
// g++ ... caas-demo.cpp;

/// Call an interpreted function using its symbol address.
void callInterpretedFn(clang::Interpreter& interp) {

// Declare a function to the interpreter. Make it extern “C”

// to remove mangling from the game.

clang::Value V;

interp.ParseAndExecute("extern \"C\" int sqg(int x) { return x * x;
'sq(1l2)", &V);

printf("From JIT: square(l12)=%d\n", V.getInt());

auto SymAddr = ExitOnErr(Interp->getSymbolAddress('sqg"));

auto squarePtr = SymAddr.toPtr<int(*)(int)>();

printf("From compiled code: sqg(1l3)=%d\n", squarePtr(13));

. /caas-demo

int main(int argc, const char* const* argv) { 11:15:00-vvassilev~$./caas—demo
clang::IncrementalCompilerBuilder CB; Hello Interpreter World!
CB.SetCompilerArgs({“-std=c++20"}); From JIT: square(12)=144
auto I = Interpreter::create(std::move(CB.CreateCpp())); From compiled code: square(13)=169

callInterpretedFn(I);
return O0;

t
LLVM Dev Meeting, Oct, 2023

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

po

28

Interactive C++. Key Insights

* Incremental Compilation > #include <vector>
> std::vector<int> v = {1,2,3,4,5};
o Handhng CIrTors > std.sort(v.begin(), v.end());
. input line 1:1:1: error: unexpected namespace
% SyntaCtlc name 'std': expected expression
std.sort(v.begin(), v.end());

+* Semantic

> std::sort(v.begin(), v.end());
> v // No semicolon
(std::vector<int> &) { 1, 2, 3, 4, 5 }

+ Execution of statements
+ Displaying execution results

. L. > std::string v = "Hello World"
% Ent1ty redefinition (std::string &) "Hello World"

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023

29

Demo: Jupyterlite

+* Demonstrate Clang-Repl in browser

A. Ghosh

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 30

Broader Impact

The project developed technical and human capital in the intersection of
compiler and data science. It connected domain scientists to the LLVM
community via core technologies fostering synergies and collaborations with
industry.

The project helped develop 27 young professionals from 11 different countries

some of who went to prestigious academic and industrial institutions such as
UCSD, ETH Zurich, CERN, Pittsburgh U, IIT and QualComm.

LLVM Dev Meeting, Oct, 2023 Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023 31

