
12.10.2023

Unlocking the Power of C++ as a Service:
Uniting Python's Usability with C++'s Performance
Vassil Vassilev, compiler-research.org

The current work is partially supported by National Science Foundation under Grant OAC-1931408. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

http://compiler-research.org

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Motivation

Is there a way to combine the expressiveness of Python and the
power of C++ without creating a new programming language?

2

Leverage the exploratory programming infrastructure
developed in the field of high energy physics and

make it available to other scientific domains via LLVM
and open source.

In-Tree Support for Incremental Compilation
With Clang-Repl

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Support For Incremental Compilation

Positive outcome for our LLVM
community reachout. Adapting
mainline LLVM infrastructure started
shortly after.

5

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Support For Incremental Compilation. Clang-Repl

Initial version of the incremental
compilation infrastructure landed in
LLVM and was released in LLVM 13.
Gradual improvements in every
release.

Since LLVM 13, approximately 30
developers have contributed in that
area.

6

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Clang-Repl Helped Upstreaming Tech. Debt

Clang-Repl provided an environment which helps explain and test
the custom patches developed in the domain of High-Energy Physics
(HEP). Most patches are released via LLVM17.
✤ During the project we have upstreamed the essential patches

relevant for incremental compilation
✤ That lead to faster llvm upgrade cycles in HEP. Time for upgrades

went down from approximately 1 year (llvm5->llvm9) to several
months from (llvm9->llvm13) to several weeks (llvm13->llvm16).

7

T. Pathak

J. Zhang

J. Hahnfeld

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Developments Related to Clang-Repl (1)

Clang-Repl drove several new developments:
✤ Automatic completion at the prompt improving the overall user

user experience (will be released in LLVM18). See F. Fu’s student
talk later today.

✤ Implement shared memory manager for JITLink enabling efficient
out-of-process execution to improve system stability (LLVM15)

✤ Program reoptimization. See S. Kim’s talk from yesterday.

8

F. Fu

A. Ghosh

S. Kim

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

S. Kim

Developments Related to Clang-Repl (2)

JITLink is a library for JIT Linking. That is a component enabling re-
use of LLVM as an in-memory compiler by adding an in-memory
link step to the end of the usual compiler pipeline.

✤ Develop Windows Support (COFF in LLVM16)
✤ Develop ARM64 Unix Support (Aarch64 in LLVM16)
✤ Develop ARM32 Unix Support based on our ARM64

infrastructure — external contribution
✤ Develop RISCV JIT Support (LLVM16)
✤ Develop PowerPC Support (ppc64 in LLVM18) — contributed

by IBM/Sycomp
9

J. Hahnfeld

https://llvm.org/docs/JITLink.html#jit-linking

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Interactive CUDA Support

10

Implemented a novel approach in
interpreting CUDA codes where the
PTX is passed through the virtual file
system (LLVM17)

The CUDA engine in Clang-Repl
helped discover issues in the
mainstream CUDA support in Clang.

A. Ghosh

Automatic Language Interoperability

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Interoperable, Interactive C++ in Jupyter

12

compiler-research.org’s	Compiler-As-A-Service	Project	Final	Goal.	Shown	in	the	live	demo.

Crossing	the	
language	barrier	
is	expensive

Our	Compiler-
As-A-Service	

Approach	solves	
that

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Clang-Repl in Data Science With Xeus

Xeus is a protocol that enables executors to connect to the Jupyter
infrastructure:
✤ Xeus-Clang-Repl enables incremental C++ with interoperability

extensions in Jupyter by implementing the Xeus kernel protocol

13

A. Penev

S. Corlay

I. Ifrim

A. Ghosh

https://xeus.readthedocs.io/en/latest/
https://github.com/compiler-research/xeus-clang-repl

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Automatic Language InterOp With Python

CPPYY is A CPython/PyPy Extension using their C API. It offers
automatic, on-demand mapping of Python to C++ concepts

14

W. Lavrijsen

val = std.vector[int]((1,2,3))

Every unsuccessful lookup can be
completed by a C++ entity connected

to a python class wrapper.

While parsing we can associate each construct with a C++ entity. The approach does
not require the project maintainer to bother providing static bindings

https://cppyy.readthedocs.io/en/latest/

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Moving CPPYY to LLVM Orbit With CppInterOp

Provides interoperability primitives for C++ to enable crosstalk in
automatic way with Python but also for D, Julia. The library allows
replacing the cppyy backend with a specialized and more robust
InterOp, moving it closer to LLVM orbit to allow.

15

B. Kundu

Tutorials & Community Outreach

https://github.com/compiler-research/pldi-tutorials-2023

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Community Outreach
✤ Open, Virtual Weekly Team Meetings
✤ Open, Virtual Monthly Meetings

✤ 13 invited talks by speakers from institutions such as Apple, HZDR,
QuantStack, Max-Planck, LBL, CERN and EA

✤ Student mentoring
✤ 2 Unpaid Contributors
✤ 2 CERN Interns
✤ 4 IRIS-HEP Fellows
✤ 15 Google Summer of Code

✤ 3 Technical Documentation Writers via Google Season of Docs
17

https://compiler-research.org/vacancies/

https://compiler-research.org/meetings/
https://compiler-research.org/team/

https://compiler-research.org/vacancies/
https://compiler-research.org/meetings/
https://compiler-research.org/team/

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Compiler (C++) As A Service

18

Static Compiler

Abstract machine Target machine

In-Process Compiler As A Service

Pr
od

uc
ed

 b
in

ar
y

Bi
na

ry
 s

ta
rte

d

Bi
na

ry
 e

xe
cu

tio
n

Abstract user Concrete user(s)

Ahead of Time Just-in-Time Continuous Optimization 
 (LLVM’s OrcV2)

defer

develop deploy start execute

optimize

PGO

More in S. Kim’s talk, yesterday 
Automatic program reoptimization  

support in LLVM ORC JIT

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Future Work

The funding period is finished but we have plenty of interesting things to
pursue in this area:
✤ Continue the open meetings policy
✤ Continue bug fixing and stabilizing Clang-Repl
✤ Continue developing tutorials
✤ Reach out to other scientific domains to inform their communities for the

new possibilities offered by our innovative software stack!

19

Live Demo https://youtu.be/be89sF0WLrc

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Demo: Project Motivation Mockup

✤ C++: Create a C++ Struct `S`
✤ Python: Create a wrapper class

over std::vector instantiated with
`S`

✤ Python: Print the value of `S`
✤ Python: Derive from `S`
✤ CUDA: Perform a sum over array

and record the result into res.

21

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Demo: OpenMP Hello World

✤ Run OpenMP codes in Jupyter

22

A. Penev

M. Vassilev

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Demo: Image Processing. Mixing Python/C++/CUDA

Use Pillow and NumPy interactively with C++ and
CUDA execution
✤ CUDA: Apply underexposure to pixels based on a

threshold value
✤ C++: Data conversion
✤ Python: Plotting

23
A. Jomy

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Demo: Kalman Filter. Mixing Python/C++/CUDA

Use PyYaml and Matplotlib interactively with C++
and CUDA execution
✤ CUDA: Compute fast matrix and vector operations
✤ C++: Set of efficient CUDA function abstractions
✤ Python: Data processing and plotting

24

A. Jomy

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

A Note of Gratitude

25

This multiyear, multi person effort would not have been possible without
YOU!

The compiler-research team would like to express its deepest gratitude to the
various people who contributed intellectual work in the area over the years!

Thank you!

Exploratory programming with C++

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

CaaS. Programming Model

28

/// Call an interpreted function using its symbol address.
void callInterpretedFn(clang::Interpreter& interp) {
 // Declare a function to the interpreter. Make it extern “C”
 // to remove mangling from the game.
 clang::Value V;
 interp.ParseAndExecute("extern \"C\" int sq(int x) { return x * x; }"  
 "sq(12)", &V);  
 printf("From JIT: square(12)=%d\n", V.getInt());
 auto SymAddr = ExitOnErr(Interp->getSymbolAddress("sq"));
 auto squarePtr = SymAddr.toPtr<int(*)(int)>();
 printf("From compiled code: sq(13)=%d\n", squarePtr(13));
}

// caas-demo.cpp
// g++ ... caas-demo.cpp; ./caas-demo
int main(int argc, const char* const* argv) {
 clang::IncrementalCompilerBuilder CB;
 CB.SetCompilerArgs({“-std=c++20"});
 auto I = Interpreter::create(std::move(CB.CreateCpp()));
 callInterpretedFn(I);
 return 0;
}

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Interactive C++. Key Insights

✤ Incremental Compilation
✤ Handling errors

✤ Syntactic
✤ Semantic

✤ Execution of statements
✤ Displaying execution results
✤ Entity redefinition

29

> #include <vector>
> std::vector<int> v = {1,2,3,4,5};

> std.sort(v.begin(), v.end());
input_line_1:1:1: error: unexpected namespace
name 'std': expected expression
std.sort(v.begin(), v.end());
^

> std::sort(v.begin(), v.end());
> v // No semicolon
(std::vector<int> &) { 1, 2, 3, 4, 5 }

> std::string v = "Hello World"
(std::string &) "Hello World"

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

A. Ghosh

Demo: JupyterLite

✤ Demonstrate Clang-Repl in browser

30

Unlocking the Power of C++ as a Service, V. Vassilev, 12-Oct-2023LLVM Dev Meeting, Oct, 2023

Broader Impact

The project developed technical and human capital in the intersection of
compiler and data science. It connected domain scientists to the LLVM
community via core technologies fostering synergies and collaborations with
industry.

The project helped develop 27 young professionals from 11 different countries
some of who went to prestigious academic and industrial institutions such as
UCSD, ETH Zurich, CERN, Pittsburgh U, IIT and QualComm.

31

