

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Speaker

Vassil Vassilev, Research Software Engineer, Princeton/CERN

2

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Outline

• Introduction

• Key insights of Interactive C++

• Execution of statements, Execution Results, Entity redefinitions, Error Recovery, Code Undo

• Interpreting C++. Tools and technology

• Interactive, interpretative C++ for Data Science

• Eval-style programming, C++ in notebooks, CUDA C++

• Beyond just interpreting C++

• Template instantiation on demand, Language Interop on Demand

• Interpreter/Compiler as a service

• Extensions, Automatic differentiation on the fly, Lifelong Optimization

• Conclusion

3

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Acknowledgement & Disclaimer

• This talk includes technologies developed by various
individuals and organizations in the area of interpretative C++
since 1998

• This talk is about work conducted by me but also the work of
dozens colleagues and contributors from many domains in
science and industry. In the slides I have tried to mention
individuals and organizations where possible.

• Any characterizations, mischaracterizations, emphasis and
errors are solely mine and do not necessarily represent the
views of other individuals or organizations.

4

The current work is partially supported by National Science Foundation under Grant OAC-1931408. Any

opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science Foundation.

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Introduction

Despite its power, C++ is often seen as difficult to learn, difficult to teach and
inconsistent with rapid application development/exploratory programming.

Exploration and prototyping is slowed down by the long edit-compile-run cycles
during development.

5

Is C++ a “compiled” language?
Is C++ an “experts’” language?

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Choice of translation

The language translation should be an implementation choice.

Language design could affect the choice of translation and the choice of translation
can affect language design.

6

What would it enable if we start interpreting C++?

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interactive C++

The invisible compile-run cycle aids interactive use offering a different programming experience and enhanced
productivity. It becomes trivial to orient a shape, choose size and color or compare to previous settings.

7

Video Credits: A. Penev

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Exploratory Programming

• An effective way to gain understanding of code/algorithms

• Interactive probing of data and interfaces makes complex libraries accessible to
users

• Significantly reduces the edit-compile-run cycle

8

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Exploratory Programming

• Languages which enable exploratory programming tend to have interpreters to
shorten the compile-run cycle but generally have a noticeable cost

• Language designers who acknowledge the use case of exploratory programming
may also put syntax sugar to improve convenience and terseness

• Performance is mitigated nowadays by just-in-time (JIT) or ahead-of-time (AOT)
compilation technology

9

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interactive C++. Key Insights
• Incremental Compilation

• Handling errors

• Syntactic

• Semantic

• Execution of statements

• Displaying execution results

• Entity redefinition

10

[cling] #include <vector>

[cling] std::vector<int> v = {1,2,3,4,5};

[cling] std.sort(v.begin(), v.end());

input_line_1:1:1: error: unexpected namespace

name 'std': expected expression

std.sort(v.begin(), v.end());

^

[cling] std::sort(v.begin(), v.end());

[cling] v // No semicolon

(std::vector<int> &) { 1, 2, 3, 4, 5 }

[cling] std::string v = "Hello World"

(std::string &) "Hello World"

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interactive C++. Key Insights

[cling]$ #include <cling/Interpreter/Value.h>

[cling]$ #include <cling/Interpreter/Interpreter.h>

[cling]$ int i = 1;

[cling]$ cling::Value V;

[cling]$ gCling->evaluate("++i", V);

[cling]$ i

(int) 2

[cling]$ V

(cling::Value &) boxes [(int) 2]

[cling]$ ++i

(int) 3

[cling]$ V

(cling::Value &) boxes [(int) 2]

11

• Eval-style programming –
enables embedding in
frameworks

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interpreters for C++

• Ch – a proprietary cross-platform C and C++ interpreter and scripting language
environment, originally designed by Harry H. Cheng as a scripting language for
beginners to learn mathematics, computing, numerical analysis (numeric
methods), and programming in C/C++. Last release 2017

• CINT – a command line C/C++ interpreter that was originally developed by
Masaharu Goto and later included in the ROOT data analysis software package.
Last release 2013

• Cling – an LLVM-based C/C++ interpreter developed in the field of high-energy
physics to replace CINT in ROOT. Last release 2021

12

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

ast

Interpreting C++. Cling

13

C/C++ Input

Cling TransformationslibClang

LLVM JIT MC (x86, NVPTX, ...)

CPU

GPGPU

text

text

ast

astast

ir

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interpreting C++. Cling

• Cling has originally developed in the field of high energy physics to enable
interactivity, dynamic interoperability and rapid prototyping capabilities to C++
developers.

• Cling supports the full C++ feature set including the use of templates, lambdas,
and virtual inheritance.

• Cling adds a small set of extensions in C++ to allow interactive exploration and
makes the language more welcoming for use.

• Cling compiles C++ code incrementally and relies on JIT compilation

• Cling enables exploratory programming for C++

14

Interactive C++ in Data Science

15

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Data Science

• Data science is a "concept to unify statistics, data analysis, informatics, and their
related methods" in order to "understand and analyze actual phenomena" with
data. Considered by some as the “fourth paradigm” of science next to empirical,
theoretical and computational science.

• Per LinkedIn, there has been a 650% increase in data science jobs since 2012.

• The U.S. Bureau of Labor Statistics sees strong growth in the data science field
and predicts the number of jobs will increase by about 28% through 2026 (that is
roughly 11.5 million new jobs).

16

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Xeus-Cling. C++ in Notebooks

• Xeus-Cling is a Cling-based Jupyter Notebook kernel

• If you use C++ in Jupyter you use xeus-cling

• Developed and maintained by the private company QuantStack

17

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Xeus-Cling. C++ in Notebooks

Visualization of user-defined images
Direct access to documentation

Rich mime type rendering in Jupyter

18

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Xeus-Cling. C++ in Notebooks

Xwidgets – User-defined controls Xleaflet – Interactive Geo Information System

19

S. Corlay, Quantstack, Deep dive into the Xeus-based Cling kernel for Jupyter, May 2021, compiler-research.org

https://compiler-research.org/assets/presentations/S_Corlay-CaaS_Xeus-Cling.pdf

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interactive CUDA C++

• Interactive CUDA backend

• Developed and maintained
by HZDR

[cling] #include <iostream>

[cling] #include <cublas_v2.h>

[cling] #pragma cling(load "libcublas.so")

// set parameters, allocate memory ...

[cling] __global__ void init(float *matrix, int size){

[cling] ? int x = blockIdx.x * blockDim.x + threadIdx.x;

[cling] ? if (x < size)

[cling] ? matrix[x] = x;

[cling] ? }

[cling]

[cling] // launching a function direct in the global space

[cling] init<<<blocks, threads>>>(d_A, dim*dim);

[cling] init<<<blocks, threads>>>(d_B, dim*dim);

[cling]

[cling] cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, dim, dim,

dim, &alpha, d_A, dim, d_B, dim, &beta, d_C, dim);

[cling] cublasGetVector(dim*dim, sizeof(h_C[0]), d_C, 1, h_C, 1);

[cling] cudaGetLastError()

(cudaError_t) (cudaError::cudaSuccess) : (unsigned int) 0

20

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Interactive CUDA C++

21

S. Ehrig, HZDR, Cling’s CUDA Backend: Interactive GPU development with CUDA C++, Mar 2021, compiler-research.org

https://compiler-research.org/assets/presentations/S_Ehrig-CaaS_Cling-CUDA.pdf

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

ROOT – Scientific Data Analysis

• Developed and maintained by the field of high-energy physics and organizations
such as CERN, FNAL, GSI, University of Nebraska, UC San Diego, Princeton

• Last 5 years the ROOT and Cling technology are used to store around 1EB physics
data facilitating more than 1000 scientific publications

• The ROOT data analysis package embeds Cling to enable interactive C++ but also
to use it as a reflection information service for data serialization

22

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Dynamic Scopes. Runtime Lookup

Eval-style programming enables Cling to be embedded in frameworks.

[root] ntuple->GetTitle()

error: use of undeclared identifier 'ntuple'

[root] TFile::Open("tutorials/hsimple.root"); ntuple->GetTitle()

(const char *) "Demo ntuple"

[root] gFile->ls();

TFile** tutorials/hsimple.root Demo ROOT file with histograms

TFile* tutorials/hsimple.root Demo ROOT file with histograms

OBJ: TH1F hpx This is the px distribution : 0 at: 0x7fadbb84e390

OBJ: TNtuple ntuple Demo ntuple : 0 at: 0x7fadbb93a890

KEY: TH1F hpx;1 This is the px distribution

[...]

KEY: TNtuple ntuple;1 Demo ntuple

[root] hpx->Draw()

23

gCling->EvaluateT</*ret type*/void>("ntuple->GetTitle()", /*context*/);

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Impact of Interactive C++ in Physics

Scientific breakthroughs such as the discovery of the big void in the Khufu’s Pyramid,
the gravitational waves and the Higgs boson heavily rely on the ROOT software package

[1]

[1] K. Morishima et al, Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons, Nature, 2017

[2] Abbott et al, Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016

[3] CMS Collab, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 2012

[2]

[3]

24

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Key Insights

• Cling is not just a Repl, it is an embeddable and extensible execution system for
efficient incremental execution of C++

• Cling is used in several high-performance systems to provide reflection and
introspection information

• Cling can produce efficient code for performance-critical tasks where hot-spot
regions can be annotated with specific optimization levels

• Cling allows us to decide how much we want to compile statically and how much
to defer for the target platform

25

Beyond Just Interpreting C++

26

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Automatic Language InterOp

V. Vassilev, Princeton, Interactive C++: A Language InterOp Layer, Oct 2021, compiler-research.org

27

https://compiler-research.org/assets/presentations/V_Vassilev-CaaS_LibInterOp.pdf

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Automatic Language InterOp. Python

Cppyy connects the Cling interpreter to the Python interpreter to co-operate.

28

W. Lavrijsen, LBL, cppyy, Sep 2021, compiler-research.org

https://compiler-research.org/assets/presentations/W_Lavrijsen-CaaS_Cppyy.pdf

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Automatic Language InterOp. Python

The approach does not require the project maintainer to bother providing static bindings

29

W. Lavrijsen, LBL, cppyy, Sep 2021, compiler-research.org

https://compiler-research.org/assets/presentations/W_Lavrijsen-CaaS_Cppyy.pdf

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Automatic Language InterOp. D

Sil-Cling connects D to C++ via Cppyy at runtime

30

A. Militaru, Symmetry Investments, Calling C++ libraries from a D-written DSL: A cling/cppyy-based approach, Feb 2021, compiler-research.org

https://compiler-research.org/assets/presentations/A_Militaru-Calling_Cpp_libraries_from_a_D-written_DSL.pdf

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Automatic Language InterOp. Julia

Cxx.jl, similarly to Cppyy uses incremental compilation (not based on Cling).

31

K. Fischer, Julia Computing, A brief history of Cxx.jl, Aug 2021, compiler-research.org

https://compiler-research.org/assets/presentations/K_Fischer_Cxx_jl.pdf

Compiler As A Service

32

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Compiler As A Service

The design of Cling, just like Clang, allows it to be used as a library. In the next
example we show how to incorporate libCling in a C++ program. The program can
by compiled by your favorite compiler. Cling can be used on-demand, as a service,

to compile, modify, describe or extend C++ but also use CUDA.

33

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Compiler As A Service

34

/// Call an interpreted function using its symbol address.

void callInterpretedFn(cling::Interpreter& interp) {

// Declare a function to the interpreter. Make it extern "C”

// to remove mangling from the game.

interp.declare(”#pragma cling optimize(1)”

extern \"C\" int cube(int x) { return x * x * x; }");

void* addr = interp.getAddressOfGlobal("cube");

using func_t = int(int);

func_t* pFunc = cling::utils::VoidToFunctionPtr<func_t*>(addr);

std::cout << "7 * 7 * 7 = " << pFunc(7) << '\n';

}

// caas-demo.cpp

// g++ ... caas-demo.cpp; ./caas-demo

int main(int argc, const char* const* argv) {

cling::Interpreter interp(argc, argv, LLVMDIR);

callInterpretedFn(interp);

return 0;

}

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Compiler As A Service. Extensions

35

int main(int argc, const char* const* argv) {

std::vector<const char*> argvExt(argv, argv+argc);

argvExt.push_back("-fplugin=etc/cling/plugins/lib/clad.so");

cling::Interpreter interp(argvExt.size(), &argvExt[0], LLVMDIR);

gimme_pow2dx(interp);

return 0;

}

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Compiler As A Service. Extensions

36

#include <...>

// Derivatives as a service.

void gimme_pow2dx(cling::Interpreter &interp) {

// Definitions of declarations injected also into cling.

interp.declare("double pow2(double x) { return x*x; }");

interp.declare("#include <clad/Differentiator/Differentiator.h>");

interp.declare("#pragma cling optimize(2)");

interp.declare("auto dfdx = clad::differentiate(pow2, 0);");

cling::Value res; // Will hold the evaluation result.

interp.process("dfdx.getFunctionPtr();", &res);

using func_t = double(double);

func_t* pFunc = res.getAs<func_t*>();

printf("dfdx at 1 = %f\n", pFunc(1));

interp.process("dfdx.getCode();", &res);

printf("dfdx code: %s\n %s\n", res.getAs<const char*>());

}

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Lifelong Optimization

37

Static Compiler

Abstract machine Target machine

Compiler As A Service

P
ro

d
u
c
e
d
 b

in
a
ry

B
in

a
ry

 s
ta

rt
e
d

B
in

a
ry

 e
x
e
c
u
ti
o
n

Abstract user Concrete user(s)

Ahead of Time Just-in-Time
Continuous Optimization

(LLVM’s OrcV2)

defer

develop deploy start execute

optimize

PGO

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Incremental Compilation in LLVM

• In the context of the compiler-as-a-service project we are gradually making it
possible to use incremental C++ in Clang

• We have put the infrastructure to required to instantiate and execute a template
in 120 LOC

38

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Instantiating a C++ template in C

39

// gcc ... template_instantiate_demo.C

#include "InterpreterUtils.h"

int main(int argc, char **argv) {

Clang_Parse("void* operator new(__SIZE_TYPE__,

void* __p);"

"extern \"C\" int printf(const char*,...);"

"class A {};"

"\n #include <typeinfo> \n"

”struct B {"

" template<typename T>"

" void callme(T) {"

" printf(\" Instantiated with [%s] \\n \",

typeid(T).name());"

" }"

"};");

const char * InstArgs = "A*";

Decl_t T = Clang_LookupName("A");

Decl_t TemplatedClass = Clang_LookupName("B");

// ...

// Instantiate B::callme with the given types

Delc_t Inst

= Clang_InstantiateTemplate(TemplatedClass,

"callme", InstArgs);

// Get the symbol to call

typedef void (*fn_def)(void*);

fn_def callme_fn_ptr

= (fn_def) Clang_GetFunctionAddress(Inst);

// Create object of type T

void* NewT = Clang_CreateObject(T);

callme_fn_ptr(NewT);

return 0;

}

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Conclusion

• Is C++ a “compiled” language?

• Is C++ an “experts’” language?

• What would it enable if we start interpreting C++?

40

27-Oct-2021 V.Vassilev – Interactive C++ for Data Science

Thank You!

Selected References

•https://blog.llvm.org/posts/2020-11-30-interactive-cpp-with-cling/

•https://blog.llvm.org/posts/2020-12-21-interactive-cpp-for-data-science/

•https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/

•https://Compiler-Research.org

•https://root.cern

•https://root.cern/cling

41

https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://blog.llvm.org/posts/2021-03-25-cling-beyond-just-interpreting-cpp/
https://compiler-research.org/
https://root.cern/
https://root.cern/cling

Q&А

42

