The current work is partially supported by National Science Foundation under Grant OAC-1931408. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the authors and do not
necessatrily reflect the views of the National Science Foundation.

(L++ as a service — rapid software development and
dynamic interoperability with Python and beyond

Interactive C++: Showcase

Vassil Vassilev

20.09.2023

Outhne

* Motivation
+ Exploratory programming with C++. Compiler-As-A-Service
* Project Goals and Implementation
+* Support For Incremental Compilation
+ Language Interoperability
+ Heterogeneous Hardware Support
+ Tutorials and Community Outreach
* Live Demo
* Future Work

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

Motivation

+* The C++ programming language is used for many numerically intensive
scientific applications.

+ C++ is often seen as difficult to learn and inconsistent with rapid
application development

+ The use of new programming languages has grown steadily in science and
in fact Python is the language of choice for data science and application
control but its computational performance is mediocre

[s there a way to combine the expressiveness of Python and the power of C++?

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 3

Exploratory programming with (+-

Interactive C++. Key Insights

* Incremental Compilation
+ Handling errors
* Syntactic
+ Semantic
+ Execution of statements
+ Displaying execution results

+ Entity redefinition

[cling] #include <vector>
[cling] std::vector<int> v = {1,2,3,4,5};

[cling] std.sort(v.begin(), v.end());
input line 1:1:1: error: unexpected namespace
name 'std’': expected expression
std.sort(v.begin(), v.end());

[cling] std::sort(v.begin(), v.end());
[cling] v // No semicolon
(std::vector<int> &) { 1, 2, 3, 4, 5 }

[cling] std::string v "Hello World"
(std::string &) "Hello World"

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

Compiler (C++) As A Service

defer

Static Compiler In-Process Compiler As A Service

S
3 5
S :
@ S
S >
3
Q &

Ahead of Time ' Just-in-Time Continuous Optimization

(LLVM’s OrcV2)

-
©
S
S
O
©
S
S
Q
!
!
!
!
!
!
|
!

develop deploy | start | execute

optimize

Abstract machine Target machine

Abstract user Concrete user(s)

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 6

(GaaS. Programming Model

/// Call an interpreted function using its symbol address.
volid calllInterpretedFn(cling::Interpreter& interp) {
// Declare a function to the interpreter. Make it extern "C”
// to remove mangling from the game.
interp.declare(”#pragma cling optimize(1l)”
extern \"C\" int cube(int x) { return x * x * x; }");
volid* addr = interp.getAddressOfGlobal("cube");

using func t = int(int);
func_t* pFunc = cling::utils::VoidToFunctionPtr<func t*>(addr);
std::cout << "7 * 7 * 7 = " << pFunc(7) << '\n';

// caas-demo.cpp

// g++ ... caas-demo.cpp; ./caas-demo . _ _
int main(int argc, Const Char* Const* argv) { VV&SSlleV@VV—nUC N/o o ./bu11dd1r $./CaaS—demO

cling::Interpreter interp(argc, argv, LLVMDIR); 7 % 7 x 7 = 343
vvassilev@vv-nuc ~/.../builddir $

callInterpretedFn(interp);
return O0;

}

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 7

Project Goals and Implementation

Leverage the infrastructure developed in the field of high energy physics and
make it available to other scientific domains via LLVM and open source.

Support For Incremental Compilation

Support For Incremental Compilation

[llvm-dev] [RFC] Moving (parts of) the Cling REPL in Clang

Vassil Vassilev via llvm-dev |
Thu Jul 9 13:46:00 PDT 2020

lvm-dev at lists.llvm.org

¢ Previous message: [llvm-dev] New experimental LI.VM project for validation of LLLVM packaging
e Next message: [llvm-dev] [cfe-dev] [REC] Moving (parts of) the Cling REPL in Clang
* Messages sorted by: [date | [thread | [subject] [author]

Motivation

¢ ¢ Over the last decade we have developed an interactive, interpretative
POSltlve OUtCOI I le Or Our LL -\/ M C++ (aka REPL) as part of the high-energy physics (HEP) data analysis
project —— ROOT [1-2]. We invested a significant effort to replace the
CINT C++ interpreter with a newly implemented REPL based on llvm —-
cling [3]. The cling infrastructure is a core component of the data

[J [J
analysis framework of ROOT and runs in production for approximately 5
community reachout. Adapting ° presinatel
o o o Cling is also a standalone tool, which has a growing community outside
1 LL‘ 7 M f t t t t d of our field. Cling’s user community includes users in finance, biology
maln lne ln raS ruc ure S ar e and in a few companies with proprietary software. For example, there is
a xeus-cling jupyter kernel [4]. One of the major challenges we face to
foster that community is our cling-related patches in llvm and clang
forks. The benefits of using the LLVM community standards for code
S Ort y a ter. reviews, release cycles and integration has been mentioned a number of

times by our "external" users.

Last year we were awarded an NSF grant to improve cling's sustainability
and make it a standalone tool. We thank the LLVM Foundation Board for
supporting us with a non-binding letter of collaboration which was
essential for getting this grant.

Background

Cling is a C++ interpreter built on top of clang and llvm. In a
nutshell, it uses clang's incremental compilation facilities to process
code chunk-by-chunk by assuming an ever-growing translation unit [5].
Then code is lowered into llvm IR and run by the llvm jit. Cling has

CaaS Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 11

Support For Incremental Compilation. Clang-Repl

Initial version of the incremental
compilation infrastructure landed in
LLVM and was released in LLVM 13.
Gradual improvements in each release.

Currently LLVM 17.

Since LLVM 13, approximately 30
developers have contributed in that
area.

O llvm / llvm=-project

> Code (*) Issues 5k+ i9 Pull requests 392 (») Actions () Security [~ Ins

Commit

[clang-repl] Land initial infrastructure for incremental parsing

In http://lists. llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in 1lvm mainline.

This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:

./bin/clang-repl

clang-repl> int i = 42;

clang-repl> extern "C" int printf(const charx,...);
clang-repl> auto rl = printf("i=%d\n", i);

i=42

clang-repl> quit

The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 12

Clang-Repl Helped Upstreaming Tech. Debt

Clang-Repl provided an environment which helps explain and test

the custom patches developed in the domain of High-Energy Physics 1 paax
(HEP). _~

+* During the project we have upstreamed the essential patches
relevant for incremental compilation

+ That lead to faster llvm upgrade cycles in HEP. Time for upgrades
went down from approximately 1 year (llvm5->llvm9) to several
months from (lvm9->llvim13) to several weeks (Ilvm13->1lvm16).

J. Hahnfeld

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 13

Developments Related to Clang-Repl

Clang-Repl drove several new developments:

+* Automatic completion at the prompt improving the overall user
user experience

+ Implement shared memory manager for JITLink enabling efficient
out-of-process execution to improve system stability

+ Implement JITLink backends for aarch64, ppc, windows to merge
the linking layers of the static linker and the JIT for improved
performance and reliability.

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 14

Clang-Repl in Jupyter

Clang-Repl regular release schedule and packaging together with
standard LLVM enabled easier adoption in the Jupyter system: A. Penev

+ Xeus-Clang-Repl enables incremental C++ with interoperability
extensions in Jupyter

4

S. Corlay

+ Xeus-Cpp enables Clang-Repl in JupyterLite
+ WebAssembly-based Clang-Repl in JupyterLite

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 L Ifr 1y

Automatic Language Interoperability

Clang-Repl in Jupyter

-
Crossing the

language barrier

is expensive : struct S { double val = 1.; };
N\
from libInterop import std
python_vec = std.vector(S) (1)
print(python_vec[@].val)
" Our Compiler- 1
As-A-Service
: class Derived(S)
Approach solves def __init_ (self):
_ that Y, self.val = @

res = Derived()

__global__ void sum_array(int n, double *x, double *sum) {
for (int 1 = 0; i < n; i++) *sum += x[i];

}

// Init N=1IM and x[i] = 1.f. Run kernel on 1M elements on the GPU.
sum_array<<<l, 1>>>(N, x, &res.val);

compiler-research.org’s Compiler-As-A-Service Project Final Goal. Shown in the live demo.

CaaS Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

Automatic Language InterOp. Python

Performance Compared to Static Approaches Basic Performance Test: overload

« No fundamental CPU performance difference
C++ (Cling w/ -02; out-of-line) 1.8E-6
Note carefully that everything in Python is runtime; st -5
L J L) L] B . ’ L] /CP h 1-25
compile-time just means that the bindings recipe is °p',’”;b 'It'y)t > .

. . . swig (builtin i
|

compiled, not the actual bindings themselves! i (defaull i2s
pybind11 6.97

« But heavy Cling/LLVM dependency:
) = C++ overload is resolved at compile time, not based on dynamic type
— ~25MB download cost; ~T00MB memory overhead = Largest overhead: Python instance type checking (avoidable, but clumsy)
_ Complex installation (and worse bUIld) = There is no obvious benefit to “static” over runtime bindings

(%) lower is better

7' ENERGY

W. Lavrijsen, LBL, cppyy, Sep 2021, compiler-research.org

The approach does not require the project maintainer to bother providing static bindings

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 18

https://compiler-research.org/assets/presentations/W_Lavrijsen-CaaS_Cppyy.pdf

CPPYY In Brief

+* A CPython/PyPy Extension using their C API

W. Lavrijsen

+* Automatic, on-demand mapping of Python to C++ concepts
+ Incredible piece of art and engineering, often neglected

+ Relies on on-demand reflection information provided by the heavy ROOT
framework.

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 19

Moving CPPYY Closerlo The LLILVM Orbit

Replacing the cppyy backend with a specialized and more robust InterOp
layer yields:

+ Hasier adoption of newer LLVM versions (CUDA, C++ standards)

+ Easer implementation of new features

+ Better release cycle

* Wider adoption

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

20

CPPYY Backend Redesign With CpplnterOp

Every unsuccessful lookup can be

B Memory used by original Cppyy
B Memory used by Cppyy w/ InterOp

s Time taken by original Cppyy
e’ Time taken by Cppyy w/ InterOp

completed by a C++ entity connected

to a python class wrapper.

val

While parsing we can associate each construct with a C

CaaS Monthly, Sep, 2023

std.vector[int]((1,2,3))

0.09 142 1000 10000
0.08 140 100
) . 1000 =

0.07 138 3 2 K
= 2 = 5 10 e%
= v a 7 u 7
@ 0.06 136 & @ = % =
E: g E¥ 1o 58
E 0.05 134 g § é . §§
= =z . =

0.04 132 & g o =X

0.03 130 0.01

0.02 128 0.001 1

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8§ 9 10
Number of tcmplate arguments Number of nested template instantiations
Figure 3. Time taken and memory used during class template instantiation.

On the left, we compare template instantiations with std::tuple<double, double, ...>
where the number of template instantiations done by the C++ interpreter increases with the
number of template arguments. On the right, we compare instantiating nested templates,
for example, std: :vector<...<std::vector<double> >, where cppyy has to instantiate each
nesting individually from the innermost to the outermost class template. These are common
features of high-performance, templated numerics libraries that utilize template expressions.

entity

Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 21

CpplnterOp — Clang-based Language InterOp Library

The goal was to create a C++ language interoperability layer
allowing efficient automatic bindings with Python but also for D,
]U.lia, etc... B. Kundu

+ Created a document which describes prior art (cppyy and
cxx.jl) and enumerates key features

+* Implemented a proof of concept which is able to instantiate a
C++ template on the fly from within Python

O compiler-research / CppinterOp

.zc Connected the Cppyy backend tO CppInterOp ¢> Code (%) Issues 5 17 Pull requests 7 1) Disc

ITl CpplInterOp Pubiic

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 22

Heterogeneous Hardware Support

Design And Develop Interactive CUDA Support

Implemented a novel approach in
interpreting CUDA codes where the
PTX is passed through the virtual file

system

The CUDA engine in Clang-Repl
helped discover issues in the

mainstream CUDA support in Clang.

O llvm / llvm-project

<> Code (%) Issues 5k+ 10 Pullrequests 407 (») Action

Commit

x [clang-repl][CUDA] Initial interactive CUDA support for

CUDA support can be enabled in clang-repl with —--cuda flac
Device code linking is not yet supported. inline must be
__device functions.

Differential Revision: https://reviews. llvm.org/D146389

¥ main
O llvmorg-18-init ... llvmorg-17.0.0-rc1

"= argentite committed on May 20

A. Ghosh
Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 24

Design And Develop Interactive OpenMP Support

— O compiler-research / xeus-clang-re

<> Code (*) Issues 8 i1 Pull requests

Implemented OpenMP support in Commit
Clang-Repl and Jupyter

v Add OpenMP Support (#39)

¥ main (#39)

o alexander-penev committed 2

A. Penev
CaaS Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 25

Support New Architectures In JI'TLink

JITLink is a library for JIT Linking. That is a component enabling re-

use of LLVM as an in-memory compiler by adding an in-memory S
link step to the end of the usual compiler pipeline. ¢ i

+ Develop Windows Support (COFF)
+* Develop ARM64 Unix Support (Aarch64)

+ Develop ARM32 Unix Support based on our ARM64
infrastructure — external contribution

+* Develop PowerPC Support (ppc64) — contributed by IBM

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 26

https://llvm.org/docs/JITLink.html#jit-linking

Tutorals & Community Outreach

https:/ / compiler-research.org / vacancies /

C Ommunlt}] O utre aCh https: / / compiler-research.org /team /

https:/ / compiler-research.org /meetings /

+ Open, Virtual Weekly Team Meetings
+ Open, Virtual Monthly Meetings

+ 13 invited talks by speakers from institutions such as Apple, HZDR,
QuantStack, Max-Planck, LBL, CERN and EA

+ Student mentoring
+ 2 Unpaid Contributors
+ 2 CERN Interns
+ 4 IRIS-HEP Fellows
+ 15 Google Summer of Code

+ 3 Technical Documentation Writers via Google Season of Docs

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 28

https://compiler-research.org/vacancies/
https://compiler-research.org/meetings/
https://compiler-research.org/team/

Community Outreach. Presentations

https:/ / compiler-research.org / presentations

+ https:/ /compiler-research.org / presentations / # VVACAT2022 ACAT 2022, V
Vassilev, Invited talk

+ Using C++ From Numba, Fast and Automatic, PyHEP 2022, B Kundu

+ Enabling Interactive C++ with Clang, LLVM Developers” Meeting 2021, V
Vassilev

+ Estimating Floating-Point Errors Using Automatic Differentiation, SIAM
UQ 2022, V Vassilev, G Singh

+ Interactive C++ for Data Science, CppCon21, V Vassilev

+ Differentiable Programming in C++, CppCon21, W Moses, V Vassilev

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 29

https://compiler-research.org/presentations/#VVACAT2022
https://indico.cern.ch/event/1106990/
https://compiler-research.org/presentations/#CppyyNumbaPyHEP2022
https://compiler-research.org/presentations/#InteractiveCppLLVMDev21
https://compiler-research.org/presentations/#FPErrorEstADSIAMUQ2022
https://compiler-research.org/presentations/#InteractiveCppCppCon21
https://compiler-research.org/presentations/#DifferentiableProgrammingInCppCppCon21
https://compiler-research.org/presentations/

Community Outreach. Publications

https:/ /compiler-research.org/publications

+ B Kundu, V Vassilev, W Lavrijsen, Efficient and Accurate Automatic Python
Bindings with cppyy & Cling (2023)

+ G Singh, B Kundu, H Menon, A Peney, et. al., Fast And Automatic Floating
Point Error Analysis With CHEF-FP (2023)

+* G Singh,] Rembser, L Moneta, D Lange, et. al., Automatic Differentiation of
Binned Likelihoods With Roofit and Clad (2023)

+* I Ifrim, V Vassilev, D Lange, GPU Accelerated Automatic Difterentiation
With Clad arXiv preprint arXiv:2203.06139 (2022)

* M Foco, M Rietmann, V Vassilev, M Wong, et. al., P2072R0: Ditferentiable

programming for C

Caa$S Monthly, Sep, 2023

(2020)

Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 30

https://compiler-research.org/publications

Community Outreach. Tutorials

https:/ / compiler-research.org / tutorials

+ S Kim, Lang Hames, V Vassilev (Princeton / CERN), Building Programming
Language Infrastructure With LLVM Components (2023-07-17)

+ Simeon Ehrig, Game of Life on GPU Using Cling-CUDA (2021-11-09)

+ Garima Singh, Floating-Point Error Estimation Using Automatic
Differentiation with Clad (2021-08-21)

* Joana Ifrim, Interactive Automatic Differentiation With Clad and Jupyter
Notebooks

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 31

https://compiler-research.org/tutorials

L.ve Demo

Demol. Project Motuivation Mockup

* C++: Create a C++ Struct 'S i
+ Python: Create a wrapper class

over std::vector instantiated with

\fs;\‘ In

+ Python: Print the value of °S’
+ Python: Derive from S’

* CUDA: Perform a sum over array
and record the result into res.

[1]:

[2]:

[3]:

(4] :

|51

struct S { double val = 1.: }:

from libInterop import std
python_vec = std.vector(S) (1)

print(python_vec[0].val)
1

class Derived(S)
def init_ (self):
self.val = 0
res = Derived()

__global__ void sum_array(int n, double *x, double xsum) {
for (int i = 0; i < n; i++) *xsum += x[i];
}
// Init N=1M and x[i] = 1.f. Run kernel on 1M elements on the GPU.
sum_array<<<l, 1>>>(N, x, &res.val);

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

LA,

33

DemoZ2. OpenMP Hello World

M. Vassilev

* Run OpenMP codes in Jupyter

CaaS Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 34

Demo5. Python/C++ InterOp: Kigen

* C++: Use the Eigen template math library to define operations

+ Python: Instantiate an eigen matrix class with python type

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 35

Demo4. CUDA Vector Addition Demo

* Run vector add in CUDA

CaaS Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 36

Demod. Python/C++/CUDA InterOp: Kalman Filter

* C++: Use the Eigen template math library to define operations

+ Python: Instantiate an eigen matrix class with python type

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 37

Demob. Jupyterlite

+* Demonstrate Clang-Repl in browser

A. Ghosh

CaaS Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 38

Impact on Science & Education

The project developed compiler-based components for data science which
helped:

+ Connect domain experts with compiler engineers
Simplify data science infrastructure in the field of High-Energy Physics
Improve Julia-based workflows via the JitLink developments

Improve stability in the ppc area useful for Numba /Numpy

A

Offer Jupyter-based education environment to study parallel technologies
such as OpenMP and CUDA

* Build an open, multicultural environment for advancing students’ skills in
engineering in LLVM and related software

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 39

Broader Impact

The project developed technical and human capital in the intersection of
compiler and data science. It connected domain scientists to the LLVM
community via core technologies fostering synergies and collaborations with
industry.

The project helped develop 27 young professionals from 11 different countries

some of who went to prestigious academic and industrial companies such as
UCSD, ETH Zurich, CERN, Pittsburgh U, IIT, QualComm and Bloomberg.

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023 40

Future Work

Plans Next Year

The funding period is finished but we have plenty of interesting things to
pursue in this area:

R T)

Continue the open meetings policy

Continue bug fixing and stabilizing Clang-Repl

Merge Xeus-Cpp and Xeus-Clang-Repl

Publish the results in the area of WebAssembly and on-line reoptimization
Continue developing tutorials

Reach out to other scientific domains to inform their communities for the
new possibilities oftered by our innovative software stack!

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

42

A Note Of Gratitude

This multiyear, multi person effort would not have been possible without
YOU!

The compiler-research team would like to express its deepest gratitude to the
various people who contributed intellectual work in the area over the years!

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

43

Conclusion

+* C++ tools can bring us bare metal performance

+ Existing tools can be reorganized and /or generalized with minimal efforts
to enable new opportunities

* We should maintain them and grow them focusing on what they are good
for

+ Many community has multi-language expertise that can allow doing more
science with the same budget

Caa$S Monthly, Sep, 2023 Interactive C++: Showcase, V. Vassilev, 20-Sep-2023

el

Thank you!

