
 Automatic Program
Reoptimization Support in

LLVM ORC JIT
b y S u n h o K i m

ABOUT ME

ABOUT ME
Undergrad student from UC San Diego

ABOUT ME
Undergrad student from UC San Diego
Worked on just-in-time linker of LLVM through Google Summer of Code 2022

ABOUT ME
Undergrad student from UC San Diego
Worked on just-in-time linker of LLVM through Google Summer of Code 2022
Worked on re-optimization feature through Google Summer of Code 2023 under guidance
of Lang Hames and Vassil Vassilev

ABOUT ME
Undergrad student from UC San Diego
Worked on just-in-time linker of LLVM through Google Summer of Code 2022
Worked on re-optimization feature through Google Summer of Code 2023 under guidance
of Lang Hames and Vassil Vassilev

Which is what this talk will be about

MOTIVATION

MOTIVATION
Compile with -O2 for only “hot” functions

The compilation time of -O0 or -O1 is faster than -O2 in general

MOTIVATION
Compile with -O2 for only “hot” functions

The compilation time of -O0 or -O1 is faster than -O2 in general
Runtime profile guided optimization

De-virtualization, instruction reordering, and other types of PGOs in ORC JIT

MOTIVATION
Compile with -O2 for only “hot” functions

The compilation time of -O0 or -O1 is faster than -O2 in general
Runtime profile guided optimization

De-virtualization, instruction reordering, and other types of PGOs in ORC JIT
Scientific computing (CERN)

Use high precision floating point for early iterations and use low precision floating
point in later iterations for places that matter

REVIVING FEATURE FROM 2003?

REVIVING FEATURE FROM 2003?

REVIVING FEATURE FROM 2003?

Quite different but has the same name :)

OVREVIEW OF ORC JIT
Usual executable generation pipeline in LLVM

F r o n t e n d

OVREVIEW OF ORC JIT
Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d

OVREVIEW OF ORC JIT
Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d

OVREVIEW OF ORC JIT

Object files

Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d L i n k e r

OVREVIEW OF ORC JIT

Object files

Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d J I T L i n k e r

OVREVIEW OF ORC JIT

Object files
(in memory)

JIT execution pipeline in LLVM

F r o n t e n d B a c k e n d J I T L i n k e r

OVREVIEW OF ORC JIT

Object files
(in memory)

Share a huge portion of pipeline with AOT

Fewer breakage by LLVM internal code changes

JIT execution pipeline in LLVM

OVREVIEW OF ORC JIT

OVREVIEW OF ORC JIT
Lazy JIT support

Frontend AST or IR module will start compiling when a function defined by it is called
in runtime.

OVREVIEW OF ORC JIT
Lazy JIT support

Frontend AST or IR module will start compiling when a function defined by it is called
in runtime.

Supports all major object file format and architecture natively.
ELF, COFF, MACHO, ARM64, PPC, RISC-V...

OVREVIEW OF ORC JIT
Lazy JIT support

Frontend AST or IR module will start compiling when a function defined by it is called
in runtime.

Supports all major object file format and architecture natively.
ELF, COFF, MACHO, ARM64, PPC, RISC-V...
In most of the cases, there’s no limitation on which object file features can be used in
JIT. (e.g. one can use MSVC SEH exception on COFF)

OVREVIEW OF ORC JIT
Lazy JIT support

Frontend AST or IR module will start compiling when a function defined by it is called
in runtime.

Supports all major object file format and architecture natively.
ELF, COFF, MACHO, ARM64, PPC, RISC-V...
In most of the cases, there’s no limitation on which object file features can be used in
JIT. (e.g. one can use MSVC SEH exception on COFF)

Runtime support
Supports static initializer, thread local storage (TLS), and runtime symbol lookup
(”dlload or dlsym” of JIT symbols)

OVREVIEW OF ORC JIT
Lazy JIT support

Frontend AST or IR module will start compiling when a function defined by it is called
in runtime.

Supports all major object file format and architecture natively.
ELF, COFF, MACHO, ARM64, PPC, RISC-V...
In most of the cases, there’s no limitation on which object file features can be used in
JIT. (e.g. one can use MSVC SEH exception on COFF)

Runtime support
Supports static initializer, thread local storage (TLS), and runtime symbol lookup
(”dlload or dlsym” of JIT symbols)

Multi-thread, remote process, speculative compilation ...

WHAT’S NEW

O R C J I T

New JIT API that does the following:

I R f u n c t i o n

WHAT’S NEW

O R C J I T

New JIT API that does the following:

I R f u n c t i o n

WHAT’S NEW

O R C J I T B i n a r y c o d e

New JIT API that does the following:

I R f u n c t i o n

WHAT’S NEW

O R C J I T B i n a r y c o d e

reoptimization request

New JIT API that does the following:

I R f u n c t i o n

WHAT’S NEW

O R C J I T B i n a r y c o d e

reoptimization request

user-defined transformation

New JIT API that does the following:

I R f u n c t i o n

WHAT’S NEW

O R C J I T
R e o p t i m i z e d
B i n a r y C o d e

reoptimization request

user-defined transformation

New JIT API that does the following:

BASIC USAGE OF REOPTIMIZATION API

BASIC USAGE OF REOPTIMIZATION API
LLLayerJIT

BASIC USAGE OF REOPTIMIZATION API
LLLayerJIT

BASIC USAGE OF REOPTIMIZATION API
LLLayerJIT

Add re-optimization layer

BASIC USAGE OF REOPTIMIZATION API
LLLayerJIT

Add re-optimization layer
Split IR module

BASIC USAGE OF REOPTIMIZATION API
LLLayerJIT

Add re-optimization layer

Add lazy-compilation layer
Split IR module

BASIC USAGE OF REOPTIMIZATION API

BASIC USAGE OF REOPTIMIZATION API
ReOptimizeLayer

BASIC USAGE OF REOPTIMIZATION API
ReOptimizeLayer

Insert instrumentation code and re-optimization request code.

BASIC USAGE OF REOPTIMIZATION API
ReOptimizeLayer

Insert instrumentation code and re-optimization request code.
User callback ReOptimizeFunc does custom re-optimization.

BASIC USAGE OF REOPTIMIZATION API
ReOptimizeLayer

Insert instrumentation code and re-optimization request code.
User callback ReOptimizeFunc does custom re-optimization.

BASIC USAGE OF REOPTIMIZATION API
ReOptimizeLayer

Insert instrumentation code and re-optimization request code.
User callback ReOptimizeFunc does custom re-optimization.

BASIC USAGE OF REOPTIMIZATION API
ReOptimizeLayer

Insert instrumentation code and re-optimization request code.
User callback ReOptimizeFunc does custom re-optimization.

BASIC USAGE OF REOPTIMIZATION API

BASIC USAGE OF REOPTIMIZATION API
AddProfilerFunc

BASIC USAGE OF REOPTIMIZATION API
AddProfilerFunc

Called to add instrumentation code to the “first version” of the functions.

BASIC USAGE OF REOPTIMIZATION API
AddProfilerFunc

Called to add instrumentation code to the “first version” of the functions.
Default is “reoptimizeIfCallFrequent” which requests re-optimization when call count is
high.

BASIC USAGE OF REOPTIMIZATION API

BASIC USAGE OF REOPTIMIZATION API
Example: do -O2 optimization if function was called more than 10

BASIC USAGE OF REOPTIMIZATION API
Example: do -O2 optimization if function was called more than 10

BASIC USAGE OF REOPTIMIZATION API
Example: do -O2 optimization if function was called more than 10

DEMO: CLANG-REPL WITH REOPT

clang-repl is LLVM’s in-tree c++ interpreter based on ORC JIT API
The code originally from CERN’s cling which has been used to analyze LHC data.

INTERNALS

INTERNALS

Redirection to new symbol happens at JIT linker (JITLink) level

INTERNALS

Redirection to new symbol happens at JIT linker (JITLink) level
When it sees “direct jump to symbol” relocation, it records the call sites.

INTERNALS

Redirection to new symbol happens at JIT linker (JITLink) level
When it sees “direct jump to symbol” relocation, it records the call sites.
When reoptimization happens, rewrite jump offset of all call sites.

INTERNALS

Redirection to new symbol happens at JIT linker (JITLink) level
When it sees “direct jump to symbol” relocation, it records the call sites.
When reoptimization happens, rewrite jump offset of all call sites.
When this is not possible, fall back to trampoline approach.

INTERNALS

Redirection to new symbol happens at JIT linker (JITLink) level
When it sees “direct jump to symbol” relocation, it records the call sites.
When reoptimization happens, rewrite jump offset of all call sites.
When this is not possible, fall back to trampoline approach.

indirect call to target or required offset is too large.

INTERNALS

Redirection to new symbol happens at JIT linker (JITLink) level
When it sees “direct jump to symbol” relocation, it records the call sites.
When reoptimization happens, rewrite jump offset of all call sites.
When this is not possible, fall back to trampoline approach.

indirect call to target or required offset is too large.
when platform prevents writable and executable memory for security reason.

INTERNALS

INTERNALS

j m p * f u n c _ p t r

func

main

func_impl_v1

0 x 4 2 4 2 4 2 4 2 4 2

func_ptr

Call *func_

Call func_impl_v1

INTERNALS

j m p * f u n c _ p t r

func

main

func_impl_v1

0 x 4 2 4 2 4 2 4 2 4 2

func_ptr

Call *func_

Call func_impl_v1

INTERNALS

j m p * f u n c _ p t r

func

main

func_impl_v1

0 x 4 2 4 2 4 2 4 2 4 2

func_ptr

Call *func_

Call func_impl_v1

INTERNALS

j m p * f u n c _ p t r

func

main

func_impl_v1

0 x 4 2 4 2 4 2 4 2 4 2

func_ptr

Call *func_

Call func_impl_v1

j m p * f u n c _ p t r

0 x 4 2 4 2 4 2 4 2 4 2

func_ptr

Call *func_

Call func_impl_v1

INTERNALS

func

main

func_impl_v1

func_impl_v2

j m p * f u n c _ p t r

0 x 4 2 4 2 4 2 4 3 4 4

func_ptr

Call *func_

Call func_impl_v1

INTERNALS

func

main

func_impl_v1

func_impl_v2

j m p * f u n c _ p t r

0 x 4 2 4 2 4 2 4 3 4 4

func_ptr

Call *func_

Call func_impl_v1

INTERNALS

func

main

func_impl_v1

func_impl_v2

j m p * f u n c _ p t r

0 x 4 2 4 2 4 2 4 3 4 4

func_ptr

Call *func_

Call func_impl_v2

INTERNALS

func

main

func_impl_v1

func_impl_v2

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API

indirect call

Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

Performance implication: hard to inline them since the destination address is decided in
runtime

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

Performance implication: hard to inline them since the destination address is decided in
runtime

Not just indirection cost but also lose opportunity for potential optimizations as values
are not within the same basic block

ADVANCED USAGE OF REOPTIMIZATION API
Virtual method table

ADVANCED USAGE OF REOPTIMIZATION API
De-virtualization

ADVANCED USAGE OF REOPTIMIZATION API

Looks at candidate destination addresses and inline some of them

De-virtualization

ADVANCED USAGE OF REOPTIMIZATION API

Looks at candidate destination addresses and inline some of them
If the function address is the known one, use the inlined body

De-virtualization

ADVANCED USAGE OF REOPTIMIZATION API

Looks at candidate destination addresses and inline some of them
If the function address is the known one, use the inlined body
Otherwise fall back to indirect call

De-virtualization

ADVANCED USAGE OF REOPTIMIZATION API
JIT implementation

ADVANCED USAGE OF REOPTIMIZATION API
JIT implementation

call %1
__orc_rt_increment_func_callcnt(%1)
__ort_rt_reoptimize(1)

JITted code

JIT code buffer

O R C J I T

ADVANCED USAGE OF REOPTIMIZATION API
JIT implementation

call %1
__orc_rt_increment_func_callcnt(%1)
__ort_rt_reoptimize(1)

orc_rt_reoptimizer.o

extern “C”
__orc_rt_increment_func_callcnt(void*);
extern “C”
__orc_rt_reoptimize(int);

JITted code

JIT code buffer

O R C J I T

“JIT-linked”

__ort_rt_reoptimize(1)

O R C J I T R E M O T E
R P C

ADVANCED USAGE OF REOPTIMIZATION API
JIT implementation

call %1
__orc_rt_increment_func_callcnt(%1)

orc_rt_reoptimizer.o

extern “C”
__orc_rt_increment_func_callcnt(void*);
extern “C”
__orc_rt_reoptimize(int);

JITted code

JIT code buffer

Recorded destination addresses

“JIT-linked”

DEMO: CLANG-REPL WITH DEVIRTUALIZATION

Showcasing the de-virtualization within clang-repl

BENCHMARKS

*all time values are average of 10 trials

Program -O1 Reoptimization ON -O2

Boost Spirit (n=1) 1.97s 2.12s 2.24s

Boost Spirit (n=500) 22.46s 21.71s 21.55s

BENCHMARKS

*all time values are average of 10 trials

Program -O1 Reoptimization ON -O2

Boost Spirit (n=1) 1.97s 2.12s 2.24s

Boost Spirit (n=500) 22.46s 21.71s 21.55s

Program -O0
Reoptimization ON +
Devirtualization OFF

-O2
Reoptimization ON +
Devirtualization ON

Ray Tracer 158.9s 66.6s 66.0s 62.5s

BENCHMARKS

*all time values are average of 10 trials

Program -O1 Reoptimization ON -O2

Boost Spirit (n=1) 1.97s 2.12s 2.24s

Boost Spirit (n=500) 22.46s 21.71s 21.55s

Program -O0
Reoptimization ON +
Devirtualization OFF

-O2
Reoptimization ON +
Devirtualization ON

Ray Tracer 158.9s 66.6s 66.0s 62.5s- 5 . 6%

BENCHMARKS

*all time values are average of 10 trials

ISSUE: INLINE MORE VS COMPILE FAST

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.
which means re-compilation by function level = splitted IR module

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.
which means re-compilation by function level = splitted IR module

ORC JIT currently have no standard way to inline out-of-module functions.

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.
which means re-compilation by function level = splitted IR module

ORC JIT currently have no standard way to inline out-of-module functions.
Lack of inlining that would have happened in non-reopt mode.

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.
which means re-compilation by function level = splitted IR module

ORC JIT currently have no standard way to inline out-of-module functions.
Lack of inlining that would have happened in non-reopt mode.
The runtime performance drop observed to be as bad as 3x slower.

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.
which means re-compilation by function level = splitted IR module

ORC JIT currently have no standard way to inline out-of-module functions.
Lack of inlining that would have happened in non-reopt mode.
The runtime performance drop observed to be as bad as 3x slower.
Current solution: don’t delete function when splitting module but just mark them
externally_available.

ISSUE: INLINE MORE VS COMPILE FAST

We’d like to reoptimize by function level for the sake of compilation latency.
which means re-compilation by function level = splitted IR module

ORC JIT currently have no standard way to inline out-of-module functions.
Lack of inlining that would have happened in non-reopt mode.
The runtime performance drop observed to be as bad as 3x slower.
Current solution: don’t delete function when splitting module but just mark them
externally_available.

but this introduces compilation overhead when module is large
O(n^2) function duplicates where n is number of functions

FUTURE GOALS

FUTURE GOALS

LTO framework for ORC JIT
Can be used to tackle inlining issue.
Also can bring more performance to non-reopt applications.

FUTURE GOALS

LTO framework for ORC JIT
Can be used to tackle inlining issue.
Also can bring more performance to non-reopt applications.

Look into optimizing function with a huge loop up front
The penalty we get when we couldn't re-optimize certain function are substantial
Penalty = cost for instrumentation + lost optimizations

FUTURE GOALS

LTO framework for ORC JIT
Can be used to tackle inlining issue.
Also can bring more performance to non-reopt applications.

Look into optimizing function with a huge loop up front
The penalty we get when we couldn't re-optimize certain function are substantial
Penalty = cost for instrumentation + lost optimizations

Generic JIT profile guided optimization framework
Could we possibly overhaul LLVM’s existing PGO infrastructure in order to reuse it?

THANKS
Code used today is available at:
https://github.com/sunho/LLVM-JIT-REOPT-Example

https://github.com/sunho/LLVM-JITLink-COFF-Example

