
Numba MVP 2023
Numba is currently a large, single code base, we’re trying to break this into reusable components

as a “compiler toolkit” with future Numba just being an instance/configuration of this toolkit.

Two parts to today’s talk:

1. PIXIE
2. RVSDG and NIL

Software authors

Packagers

UsersIn
cr

ea
si

ng
 re

st
ric

tio
n Primary decision:

AOT or JIT?

If AOT, which ISA?
If JIT, handle

dependency chain.

Little choice about
how to consume!

What impacts the consumption format of software?

What does the compilation-execution landscape
of packaged software look like (in Python)?

AOT AOT + ISA dispatch JIT JIT + IPO

 Better runtime performance

 Better execution latency

AOT AOT + ISA dispatch JIT JIT + IPO

 Better runtime performance

 Better execution latency

Cython/Custom
C-extensions

e.g. NumPy
(NEP-038)

?!
(Julia)

@numba.jit
users

What does the compilation-execution landscape
of packaged software look like (in Python)?

Numba toolkit component: PIXIE

Portable Instructions eXchanged In Executable (PIXIE) project.

PIXIE:

○ Is part of the Numba project’s R&D for 2023.
○ Is a cornerstone project in the Numba compiler-toolkit
○ Acts as a “target” for new compiler technology as its output format is designed to put the choice about

where and when to compile into the hands of the user.

The PIXIE project provides a set of tools to create PIXIE libraries

● It is a pure Python package.
● It depends on llvmlite.
● Main entry point is the PIXIE-compiler API

○ It takes LLVM IR/bitcode as input (along with PIXIE specific export instructions if desired)
○ It produces a PIXIE library.

What is a PIXIE library?

● A library created by the PIXIE tools!
● They are platform native libraries (e.g. ELF) compiled using the LLVM toolchain, linked using

native tooling.
● They are often Python C-extensions (but don’t have to be)

○ >>> import my_PIXIE_module # just works!
● Can contain additional information for use in JIT compilation.

○ The LLVM bitcode used as input to the library.
○ Numba Intermediate Language (NIL) version of the functions in the library.
○ A Python “overlay” (more about this on next slide)

● Can contain “feature set” versioned symbols along with symbols that will dispatch to them. The
PIXIE-compiler helps users create these.

foo(int *x)
_Z3fooB7+avx512Pi
_Z3fooB5+avx2Pi
_Z3fooB6+sse42Pi

 Dispatch

● Can contain a python .specialize() function to permit trivial recompilation to the host
architecture. The symbol dispatchers and Python “overlay” are both aware of the
specialised library.

PIXIE Python overlay

>>> import my_PIXIE_module
>>> my_PIXIE_module.__PIXIE__ # nested dictionaries of useful things.

{‘bitcode’: <the bitcode as bytes!>,
 ‘c_header’: <A C-header file to #include to use this library elsewhere>,
 ‘linkage’: <external library on which this library depends, e.g. [‘m’, ‘blas’]>,
 ‘NIL’: <Numba intermediate language repr of this library>,
 ‘symbols’: <expanded later>,}

{‘foo’: {‘void(int *)’: {‘address’: <the runtime address>,
‘baseline_feature’: ‘sse3’,
‘cfunc’: <ctype.CFUNCTYPE callable>,
‘ctypes_cfunctype: <ctypes.CFUNCTYPE instance>,
‘feature_variants’: {‘+avx’: {address: <runtime address>,

 cfunc:<ctype.CFUNCTYPE callable>,
 symbol: ‘_Z3fooB4+avxPi’

‘source_file’: ‘path/to/foo_source.c’,
‘symbol’: ‘_Z3fooB5+sse3Pi’}

Symbols key contents (e.g. foo compiled for sse3 baseline with avx variant):

2023 MVPs… cross module optimisation

E.g. SciPy
optimiser

E.g. objective
function from domain

specific package

User code that needs
to combine functions

from separate
packages

2023 MVPs… cross module optimisation.

E.g. SciPy
optimiser

E.g. objective
function from domain

specific package

User code that needs
to combine functions

from separate
packages

AOT - library calls

Call library symbolCall library symbol

2023 MVPs… cross module optimisation.

E.g. SciPy
optimiser

E.g. objective
function from domain

specific package

User code that needs
to combine functions

from separate
packages

JIT - inline bitcode

Inline bitcodeInline bitcode

2023 MVPs… blended compilation

New AOT
compiler

PIXIE:
New output

target

New
optimisation

capability

C/C++
integration

route

Numba++ vision
RVSDG

- CPython bytecode
- unstructured CFG e.g GOTOS
- Changes quickly due to faster-cpython

- CFG restructuring (recovery) is needed
- For canonicalization
- For control-flow aware transformation and analysis

Why Regionalized Value-State Dependence Graph?

Algorithms for restructuring of CFG
Bahmann, H., Reissmann, N., Jahre, M., & Meyer, J. C. (2015). Perfect reconstructability of
control flow from demand dependence graphs. ACM Transactions on Architecture and Code
Optimization (TACO), 11(4), 1-25. https://dl.acm.org/doi/pdf/10.1145/2693261

https://dl.acm.org/doi/pdf/10.1145/2693261

- 3 node types
- Linear
- Switches
- Tail-Loop

- Acyclic demand-dependence graph
- Regions allow multi-level IRs

(dialects)
- Explicit encoding of states

- See imperative programs via a
pure-functional lens

RVSDG Simplifies

Figure above and details from this RVSDG paper:
Reissmann, N., Meyer, J. C., Bahmann, H., & Själander, M. (2020).
RVSDG: An intermediate representation for optimizing compilers.
ACM Transactions on Embedded Computing Systems (TECS),
19(6), 1-28. https://doi.org/10.48550/arXiv.1912.05036

https://doi.org/10.48550/arXiv.1912.05036

- Avoid recomputing for SSA, loop
analysis

- Simplifies transformation

Also see paper:
Weise, D., Crew, R. F., Ernst, M., & Steensgaard, B.
(1994, February). Value dependence graphs:
Representation without taxation. In Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (pp. 297-310).
https://dl.acm.org/doi/pdf/10.1145/174675.177907

Representation without Taxation

Figure above and details from this RVSDG paper:
Reissmann, N., Meyer, J. C., Bahmann, H., & Själander, M. (2020).
RVSDG: An intermediate representation for optimizing compilers.
ACM Transactions on Embedded Computing Systems (TECS),
19(6), 1-28. https://doi.org/10.48550/arXiv.1912.05036

https://dl.acm.org/doi/pdf/10.1145/174675.177907
https://doi.org/10.48550/arXiv.1912.05036

- Reusable bytecode frontend
- CPython bytecode -> Structured representation -> Numba IL
- Structured representation

- Not a full fledged RVSDG
- Only have canonicalized CFG. So a Structured CFG form.
- Useful for other static analysis and program transformation tools

- Numba IL (NIL) will include other RVSDG properties to simplify the compiler
- Properties like

- explicit encoding of states and effects
- multi-level

The Plan

PIXIE: additional slides follow…

Mode Package author Distribution User

AOT

The packager pays the compilation
time to generate a library targeting a
single baseline ISA (and for each
platform!).

Shared library
with no
dependency.

The user experiences very little latency before their program starts
running compiled code, but the run time is only as good as the
baseline ISA.

JIT The packager pays no compilation
time.

“Source” with
dependency
on JIT
compiler
presence.

The user experiences a high latency before their program starts
running compiled code as the source has to be JIT compiled.
However the run time is likely faster than in the AOT case as the
compiled code is specialised to the user’s hardware.

Compilation time Run time

Execution latency (loading shared library)

Run time

Execution latency (JIT compiling)

Compilation time

Package authors determine how the user can use the package.

Mode Packager Distribution User

PIXIE
(UST -
AOT)

The packager pays the compilation
time to generate a library targeting
potentially multiple ISAs.

PIXIE library.
No hard
dependency.

User 1. Wants code to run ASAP.

The user gets a better runtime as PIXIE dispatches to variants that
closes match the ISA of the machine on which the code is running.

Compilation time

Run time

Execution latency (loading shared library and PIXIE dispatch)

Mode Packager Distribution User

PIXIE
(UST -
JIT-AO
T)

The packager pays the compilation
time to generate a library targeting
potentially multiple ISAs.

PIXIE library.
No hard
dependency.

User 2. Wants the code to run with maximum performance.

The user gets better runtime as PIXIE specializes exactly to the
current machine (or some target machine). The specialized libraries
are redistributable, this is like portable AOT compilation.

Compilation time

Run time

Calling .specialize() on a PIXIE library generates a new library
specialised to the current machine that the original PIXIE
library is aware of and will dispatch to.

Execution latency… first run large, subsequent tiny.

Compilation time

Mode Packager Distribution User

PIXIE
(UST -
JIT-LT
O)

The packager pays the compilation
time to generate a library targeting
potentially multiple ISAs.

PIXIE library.
No hard
dependency.

User 3. Wants the functions in the PIXIE library to take part in the
optimisation of their JIT program (whole program optimisation/LTO).

The user gets potentially better runtime performance than even that
available from using PIXIE specialize() compiled versions of
the functions because the JIT can “see” across function boundaries.

Compilation time

Run time

The PIXIE library contains
the LLVM bitcode for the
functions present in the

library. The PIXIE Python
overlay makes it trivial to
access this bitcode. The

users JIT code can then use
this as part of whole program

optimisation.

Compilation time

Numba++ vision
Backup slide: Multi-level dialects

- Popularized by MLIR
- Divide a compiler into a

composition of dialects and their
transformations

- Domain specific optimization at the
level of the dialects

- Use xDSL (https://xdsl.dev/)
- pure-Python
- Avoid C++/tablegen

Multi-level Dialect

https://xdsl.dev/

- API is Syntax (structure)

- def foo(A) -> B
- def bar(B) -> C

- Compiler = turns Syntax into Semantic

- Dialect is a mini-language
- Comes with its own dialect-level transformation

Every library as a dialect

Syntax -> grammar
Semantic -> meaning

Grammatically correct != meaningful

“Colorless green ideas sleep furiously” (Noam Chomsky)

numpy.prod(numpy.arange(10))

Library implementation provides semantic per library operation.
Compiler provides semantic base on the entire program’s use of
the library API.

Assembly

Execution

CPU

C

Composition of dialects Pandas API

Python

NumPy API

Numba
- provide a tools to empower

library writers to convert APIs
into a dialects.

- stop being the bottleneck in
implementing library support

Multiple pathways to semantic

API

Python/C

NumPy

PyTorch XLA GPU

Compilation is a structure-preserving transformation that converts syntax to semantic.

There are unobserved structures! API spec is sparse.

High-level semantic simplifies optimization
import numpy as np
from numba import njit

@njit
def base(nelem: int) -> int:
 arr = np.arange(nelem)
 return np.add(arr, arr).sum()

@njit
def opt_avoid_add(nelem: int) -> int:
 arr = np.empty(nelem, dtype=np.intp)
 for i in range(arr.size):
 arr[i] = i * 2
 return arr.sum()

@njit
def opt_avoid_sum(nelem: int) -> int:
 c = 0
 for i in range(nelem):
 c += i * 2
 return c

@njit
def opt_avoid_loop(nelem: int) -> int:
 return nelem * (nelem - 1)

With help from the community

- Divide the work of compiler engineering
- Avoid giant monolithic compiler

- Allow domain experts to provide optimization at the level of each dialect
- Don’t have to wait for the compiler engineer to learn <insert complicated topic> to write

optimization passes

More than the sum of its parts

- The community is not just helping Numba to build a compiler
- Dialect serve as a spec for alternative implementations

- NumPy is becoming the Python Array DSL already; cupy, pytorch, jax
- Bring compiler technology to the level of libraries enables tricky features

- operation fusion
- cross library optimization
- auto conversion to distributed code
- autodiff

