Numba MVP 2023

Numba is currently a large, single code base, we’re trying to break this into reusable components
as a “compiler toolkit” with future Numba just being an instance/configuration of this toolkit.

Two parts to today's talk:

1. PIXIE
2. RVSDG and NIL

What impacts the consumption format of software?

< Increasing restriction

Primary decision:
AOT or JIT?

If AOT, which ISA?

If JIT, handle
dependency chain.

Little choice about
how to consume!

What does the compilation-execution landscape
of packaged software look like (in Python)?

Better runtime performance >

< Better execution latency

What does the compilation-execution landscape
of packaged software look like (in Python)?

Better runtime performance >

Better execution latency

Cython/Custom e.g. NumPy @numba.jit
C-extensions (NEP-038) users

Numba toolkit component: PIXIE

Portable Instructions eXchanged In Executable (PIXIE) project.

PIXIE:

o Is part of the Numba project’'s R&D for 2023.

o Is a cornerstone project in the Numba compiler-toolkit
Acts as a “target” for new compiler technology as its output format is designed to put the choice about

where and when to compile into the hands of the user.

The PIXIE project provides a set of tools to create PIXIE libraries

e |tis a pure Python package.
e Itdependson llvmlite.
e Main entry point is the PIXIE-compiler API
o Ittakes LLVM IR/bitcode as input (along with PIXIE specific export instructions if desired)

o It produces a PIXIE library.

What is a PIXIE library?

A library created by the PIXIE tools!
They are platform native libraries (e.g. ELF) compiled using the LLVM toolchain, linked using
native tooling.
They are often Python C-extensions (but don’t have to be)
o >>> import my_PIXIE_module # just works!
Can contain additional information for use in JIT compilation.
o The LLVM bitcode used as input to the library.
o Numba Intermediate Language (NIL) version of the functions in the library.
o A Python “overlay” (more about this on next slide)
Can contain “feature set” versioned symbols along with symbols that will dispatch to them. The
PIXIE-compiler helps users create these.

_Z3fooB7+avx512Pi
[foo(int *x)] Dispatch _Z3fooB5+avx2Pi
_Z3fooB6+sse42Pi

Can contain a python .specialize() function to permit trivial recompilation to the host
architecture. The symbol dispatchers and Python “overlay” are both aware of the
specialised library.

PIXIE Python overlay

>>> import my_PIXIE_module
>>> my_PIXIE_module.__PIXIE__ # nested dictionaries of useful things.

{'bitcode’: <the bitcode as bytes!>,
‘c_header’: <A C-header file to #include to use this library elsewhere>,
‘linkage’: <external library on which this library depends, e.g. [‘m’, ‘blas’]>,
‘NIL’': <Numba intermediate language repr of this library>,
‘symbols’: <expanded later>, }

Symbols key contents (e.g. foo compiled for sse3 baseline with avx variant):

{"foo’: {‘void(int *)’': {'address’: <the runtime address>,

‘baseline_feature’: ‘sse3’,

‘cfunc’: <ctype.CFUNCTYPE callable>,

‘ctypes_cfunctype: <ctypes.CFUNCTYPE instance>,

‘feature_variants’: {‘+avx’: {address: <runtime address>,
cfunc:<ctype.CFUNCTYPE callable>,
symbol: ‘_Z3fooB4+avxPi’

‘source_file': ‘path/to/foo_source.c’,

‘symbol’: ‘_Z3fooB5+sse3Pi’}

2023 MVPs... cross module optimisation

User code that needs ' pixie lib 3
to combine functions :
from separate
packages

def foobar(*args):
return foo(bar, *args)

' pixie lib 1 : pixie lib 2

def foo(fn, *args) def bar(*args)

E.g. SciPy E.g. objective

optimiser

function from domain
specific package

2023 MVPs... cross module optimisation.

User code that needs pixelibz | AOT - library calls
to combine functions 5 i

from separate def foobar(*args):

packages

return foo(bar, *args)

Call library symbol

Call library symbol \\ ---------------------------------

| pixie lib 1 | pixie lib 2

def foo(fn, *args) def bar(*args)

E.g. SciPy E.g. objective

optimiser

function from domain
specific package

2023 MVPs... cross module optimisation.

User code that needs oixielibs | JIT - inline bitcode
to combine functions 5 i

from separate def foobar(*args):

packages

return foo(bar, *args)

Inline bitcode

Inline bitcode \\ -----------------------------------

| pixie lib 1 | pixie lib 2

def foo(fn, *args) def bar(*args)

E.g. SciPy E.g. objective

optimiser

function from domain
specific package

2023 MVPs... blended compilation

C/C++
integration

PIXIE:
New output

el target

C/C++ library

e T o 1™ Numba JIT

s ____ N
*/Fllg
7 N\ cross module — —
8 —>O optimization o O JITEngine |0 executsties
\>\‘I~\€\‘\
Numba C)_/ i
&
o Bytecode AOT p LLVM IR »o PIXIE o JIT Pipeline o—"
Python library compiler
— _

Python code

NEY
optimisation
capability

New AOT
compiler

Numba++ vision
RVSDG

Why Regionalized Value-State Dependence Graph?

- CPython bytecode
- unstructured CFG e.g GOTOS
- Changes quickly due to faster-cpython
- CFG restructuring (recovery) is needed
- For canonicalization
- For control-flow aware transformation and analysis

Algorithms for restructuring of CFG

Bahmann, H., Reissmann, N., Jahre, M., & Meyer, J. C. (2015). Perfect reconstructability of
control flow from demand dependence graphs. ACM Transactions on Architecture and Code
Optimization (TACO), 11(4), 1-25. https://dl.acm.org/doi/pdf/10.1145/2693261

https://dl.acm.org/doi/pdf/10.1145/2693261

RVSDG Simplifies

3 node types

- Linear

- Switches

- Tail-Loop
Acyclic demand-dependence graph
Regions allow multi-level IRs
(dialects)

Explicit encoding of states

- See imperative programs via a
pure-functional lens

int
f(int* x, float* y, int k)
{
*x = 5;
*y = 6.0;
int i=0;
int f=1;
int sum=0;
int fac=1;
do {
sum += i;
i++;
} while(i < k);
do {
fac *= f;
f++;
} while(f < k);
return fac+sum;

{e) Code

o .

(f) RVSDG of Code 1e

Figure above and details from this RVSDG paper:

Reissmann, N., Meyer, J. C., Bahmann, H., & Sjalander, M. (2020).
RVSDG: An intermediate representation for optimizing compilers.
ACM Transactions on Embedded Computing Systems (TECS),
19(6), 1-28. https://doi.org/10.48550/arXiv.1912.05036

https://doi.org/10.48550/arXiv.1912.05036

Representation without Taxation

Table 1: Thirteen most invoked LLVM 7.0.1 passes at 03.

Optimization # Invocations
H H 1. Alias Analysis (-aa) 19
- Avoid recomputing for SSA, loop 5 ks Kt Amalyils (Cbistins) 18
. 3. Optimization Remark Emitter (-opt-remark-emitter) 15
4. Natural Loop Information (-loops) 14
a nalySIS 5. Lazy Branch Probability Analysis (-lazy-branch-prob) 14
. . g . 6. Lazy Block Frequency Analysis (-lazy-block-freq) 14
- Slmpl IerS tranSfO rm atlon 7. Dominator Tree Construction (-dontree) 13
8. Scalar Evolution Analysis (-acalar-evolution) 10
9. CFG Simplifier (-simplifycfg) 8
Also see paper: 10. Redundant Instruction Combinator (-instcombine) 8
. 11. Natural Loop Canonicalization (-loop-simplify) 8
Weise, D., Crew, R. F., Ernst, M., & Steensgaard, B. 12. Loop-Closed SSA Form (-1lcssa) 7
(1994 February) Value dependence graphS' 13. Loop-Closed SSA Form Verifier (-1cssa-verification) 7
’ : : Total 156
Representation without taxation. In Proceedings of the SSA Restoration 14

21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (pp. 297-310).
https://dl.acm.org/doi/pdf/10.1145/174675.177907

Figure above and details from this RVSDG paper:

Reissmann, N., Meyer, J. C., Bahmann, H., & Sjalander, M. (2020).
RVSDG: An intermediate representation for optimizing compilers.
ACM Transactions on Embedded Computing Systems (TECS),
19(6), 1-28. https://doi.org/10.48550/arXiv.1912.05036

https://dl.acm.org/doi/pdf/10.1145/174675.177907
https://doi.org/10.48550/arXiv.1912.05036

The Plan

- Reusable bytecode frontend
- CPython bytecode -> Structured representation -> Numba IL

- Structured representation
- Not a full fledged RVSDG
- Only have canonicalized CFG. So a Structured CFG form.
- Useful for other static analysis and program transformation tools

- Numba IL (NIL) will include other RVSDG properties to simplify the compiler

- Properties like
- explicit encoding of states and effects
- multi-level

PIXIE: additional slides follow...

Mode

AOT

JIT

Package authors determine how the user can use the package.

Package author

Compilation time

The packager pays the compilation
time to generate a library targeting a
single baseline ISA (and for each
platform!).

The packager pays no compilation
time.

Distribution

Shared library
with no
dependency.

“Source” with
dependency
onJIT
compiler
presence.

User

Run time

| Execution latency (loading shared library) |

The user experiences very little latency before their program starts
running compiled code, but the run time is only as good as the
baseline ISA.

Compilation time Run time

!

Execution latency (JIT compiling)

The user experiences a high latency before their program starts
running compiled code as the source has to be JIT compiled.
However the run time is likely faster than in the AOT case as the
compiled code is specialised to the user’s hardware.

Mode

PIXIE
(UST -
AOT)

Packager

Compilation time

The packager pays the compilation
time to generate a library targeting
potentially multiple ISAs.

Distribution

PIXIE library.
No hard
dependency.

User

User 1. Wants code to run ASAP.

Run time

| Execution latency (loading shared library and PIXIE dispatch) |

The user gets a better runtime as PIXIE dispatches to variants that
closes match the ISA of the machine on which the code is running.

Mode

PIXIE
(UST -
JIT-AO
T

Packager

Compilation time

The packager pays the compilation
time to generate a library targeting
potentially multiple ISAs.

Distribution

PIXIE library.
No hard
dependency.

User

User 2. Wants the code to run with maximum performance.

Compilation time Run time

!

Calling .specialize() on a PIXIE library generates a new library
specialised to the current machine that the original PIXIE
library is aware of and will dispatch to.

Execution latency... first run large, subsequent tiny.

The user gets better runtime as PIXIE specializes exactly to the
current machine (or some target machine). The specialized libraries
are redistributable, this is like portable AOT compilation.

Mode

PIXIE
(UST -
JT-LT
0O)

Packager

Compilation time

The packager pays the compilation
time to generate a library targeting

potentially multiple ISAs.

Distribution

PIXIE library.
No hard
dependency.

User

User 3. Wants the functions in the PIXIE library to take part in the
optimisation of their JIT program (whole program optimisation/LTO).

Compilation time

Run time

!

The PIXIE library contains
the LLVM bitcode for the
functions present in the
library. The PIXIE Python
overlay makes it trivial to
access this bitcode. The

users JIT code can then use
this as part of whole program
optimisation.

The user gets potentially better runtime performance than even that
available from using PIXIE specialize() compiled versions of
the functions because the JIT can “see” across function boundaries.

Numba++ vision

Backup slide: Multi-level dialects

Multi-level Dialect

Popularized by MLIR

Divide a compiler into a
composition of dialects and their
transformations

Domain specific optimization at the
level of the dialects

Use xDSL (https://xdsl.dev/)
- pure-Python
- Avoid C++/tablegen

HOME NEWS TEAM COMMUNITY ¥ DEVELOPER ZONE ¥

Project partners

A team with a diverse skill-set looking to solve exciting challenges

School of Informatics (University of Edinburgh)

The School of Informatics leads this project, with Dr Tobias Grosser (the project Pl) and Dr
Michel Steuwer who are compiler, MLIR and LLVM experts. Being active collaborators to S"
the MLIR and LLVM communities, they bring expertise around the development of
appropriate MLIR dialects, the mechanism to connect Python based DSLs with MLIR, and
integration with LLVM. Furthermore, their wide connections throughout the compiler
communities means that the project is able to engage closely with that community and
act as a bridge between people working in HPC and compilers.

20

THE UNIVERSITY of EDINBURGH

informatics

Department of Computing (Imperial College London)

Professor Paul Kelly and Dr Gerard Gorman provide DSL : I C "

expertise to the project. Leading the development of numerous Imperla O ege
DSLs, including the popular and widely successeful Devito, their

knowledge and experience is invaluable to ensure that the LO n d 0 n

ecosystem being developed is wide ranging across DSLs. Furthermore, Devito is an explicit target of this project,
using the Python-based MLIR integration toolbox that we will develop to integrate this DSL with our ecosystem.
Additionally Paul and Gerard bring significant experience of working with seismic community, cloud computing,
and interactive HPC technologies such as Jupyter notebooks, all of which are important considerations in this
project to ensure that the DSL eco-system we will develop can interoperate with.

EPCC (University of Edinburgh)

EPCC is the UK'’s leading supercomputing centre, with Dr Nick

Brown and Dr Amrey Krause providing HPC expertise at both the
technology and application level. This includes expertise with a
number of the project’s target applications that we will be using

as vehicles to evaluate the developed eco-system. During the
proiect we will be usina manv of EPCC’s hosted HPC svstems

https://xdsl.dev/

Every library as a dialect

APl is Syntax (structure)

def foo(A) -> B
def bar(B) -> C

Compiler = turns Syntax into Semantic

Dialect is a mini-language

Comes with its own dialect-level transformation

Syntax -> grammar
Semantic -> meaning

Grammatically correct = meaningful
“Colorless green ideas sleep furiously” (Noam Chomsky)

numpy.prod(numpy.arange(10))

Library implementation provides semantic per library operation.
Compiler provides semantic base on the entire program’s use of
the library API.

Composition of dialects oandas AP|
0 -
NumPy API
Numba ----------m e g o
- provide a tools to empower
library writers to convert APIs Python
into a dialects. U
- stop being the bottleneck in hd
implementing library support c
4
Assembly
CPU - L i
Execution

Multiple pathways to semantic

NumPy

API

Python/C PyTorch XLA GPU

Compilation is a structure-preserving transformation that converts syntax to semantic.

There are unobserved structures! API| spec is sparse.

High-level semantic simplifies optimization

import numpy as np
from numba import njit

base l » | ‘
s sl |
enjit T AEPRATS hspis [l il |
def base(nelem: int) -> int: ”
arr = np.arange(nelem) opt_avoid_add , ‘
return np.add(arr, arr).sum() ‘TN”‘|! ,l,! “![’I ?.! H
enjit
def opt_avoid_add(nelem: int) -> int: opt_avoid_sum | 1E

arr = np.empty(nelem, dtype=np.intp) 1 1
for i in range(arr.size):
arr[i] =1 * 2

return arr.sum() opt_avoid_loop | E

@njit
def opt_avoid_sum(nelem: int) -> int:
c =20

for i in range(nelem):
c +=1 * 2
return c

@njit
def opt_avoid_loop(nelem: int) -> int:
return nelem * (nelem - 1)

With help from the community

- Divide the work of compiler engineering
- Avoid giant monolithic compiler
- Allow domain experts to provide optimization at the level of each dialect

- Don’t have to wait for the compiler engineer to learn <insert complicated topic> to write
optimization passes

More than the sum of its parts

- The community is not just helping Numba to build a compiler

- Dialect serve as a spec for alternative implementations
- NumPy is becoming the Python Array DSL already; cupy, pytorch, jax

- Bring compiler technology to the level of libraries enables tricky features
- operation fusion
- cross library optimization

- auto conversion to distributed code
- autodiff

