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Developing GPU applications



CPU/GPU Model
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CPU GPU

Sources: Nvidia. CUDA Reference Guide
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CPU/GPU Model
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CPU GPU

Sources: Nvidia. CUDA Reference Guide

■ Why GPU: Better performance for certain algorithms
■ Why CUDA: existing algorithms and widest distribution
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Writing CUDA code
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//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){
// …
// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
copy_kernel<int><<<32, 10>>>(a, b, c); 

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);
// …

}
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//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){
// …
// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
copy_kernel<int><<<32, 10>>>(a, b, c); 

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);
// …

}

Device-Code

Host-Code



Compiler pipeline



Parsing and executing a statement
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Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development



Parsing and executing a statement
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Input
foo()
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Class references:
cling::UserInterface



Parsing and executing a statement
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Input

Metaparser

void __cling_Un1Qu32(void* vpClingValue) 
{
   foo();
}

Tasks of the Metaparser
■ Transforms source code 
■ Detects meta commands

■ e.g.: .L libz.so
■ Linking the shared library z
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Class references:
cling::Metaprocessor
cling::utils::getWrapPoint



Parsing and executing a statement
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Input

Metaparser

Parser
Properties of the Parser
■ Non-modified Clang parser
■ Needs valid C++ code
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Class references:
cling::IncrementalParser
clang::Parser
clang::ASTConsumer



Parsing and executing a statement
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Input

Metaparser

Parser

AST-Transformer

Tasks of the AST-Transformer
■ Enables functionality

■ e.g. CUDA device kernel inliner
■ Adds error protection

■ e.g. nullptr access
■ Adds cling specific features

■ Shadow namespaces for 
redefinition
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Class references:
cling::ASTTransformer
llvm::legacy::PassManager



Parsing and executing a statement
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Input

Metaparser

Parser

AST-Transformer

Code Generator

push    rbp
mov     rbp, rsp
sub      rsp, 8
mov     QWORD PTR [rbp-8], rdi
call      foo()
nop
leave
ret
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Class references:
cling::IncrementalJIT
llvm::orc



Parsing and executing a statement
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Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

foo()
(int) 3
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Class references:
cling::IncrementalExecutor



Challenges



Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
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Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be 
activated in Cling

■ Metaparser does not use the Clang parser
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Sources: Google. gpucc: An Open-Source GPGPU Compiler
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Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be 
activated in Cling

■ Metaparser does not use the Clang parser

3)How to integrate the device pipeline?

■ Cling was not designed for a second compiler pipeline

■ Solved a lot of different implementation tasks
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Sources: Google. gpucc: An Open-Source GPGPU Compiler
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General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing 
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General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing 
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to 
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
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General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing 
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to 
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
■ The CUDA Runtime API was not used interactively until now

■ No experience

■ Some workarounds necessary
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Implementation



General Implementation – Data flow
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Versions:
Cling 0.8
Clang/LLVM 5.0
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General Implementation – Data flow
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General Implementation – Program flow
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Implementation: Compiling Device Code

■ In the begin of cling::Interpreter::process(), parse(), declare() the device compiler pipeline is 
executed 
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Implementation: Compiling Device Code

■ cling::IncrementalCUDADeviceCompiler contains device compiler pipeline
■ Uses modified cling::Interpreter for parsing and transforming code and use custom back-end to 

generate PTX and Fatbin code
■ Device compiler pipeline stages

■ Parsing code

■ AST transformations

■ Generating PTX code

■ Wrapping PTX code in Fatbin wrapper

■ Writing to file

■ Return to host compiler pipeline

■ The x86 CUDA code generator reads the Fatbin code from file
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What is still missing

■ Some C++ and CUDA statements, although supported by 
Clang 9.0 on CUDA 10.1

■ e.g. CUDA __constant__ memory 

■ and CUDA global __device__ memory
■ Not all Cling features work with CUDA yet

■ e.g. redefinition of kernels via namespace shadowing
■ Metaparser does not detect all valid CUDA C++ statements
■ Error catching needs to be improved

28 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development



Application Areas



Application areas

■ Teaching GPU programming
■ Big, interactive simulation with GPUs
■ Easing development and debugging

30

https://github.com/alpaka-group/alpaka https://github.com/ComputationalRadiationPhysics/picongpu/
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Outlook



Outlook

■ Enable CUDA mode in ROOT
■ Fixes bugs to run matmul<alpaka::AccGpuCudaRt>
■ Add support for __constant__ memory (source code transformer)
■ Refactor device compiler to inherited class of cling::Interpreter 
■ GSoC project: add redefinition support for CUDA mode

32

Versions:
Cling 0.8
Clang/LLVM 9.0
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Wish list 

■ GPU CI
■ Documentation of concepts with linkage to the code (sphinx-doc, llvm 

user documentation)
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Backup



Detail Problem: Metaparser + CUDA

■ Problem 

■ The Metaparser is completely self-written and parses the “interactive” C++ semantic and the 
meta commands of Cling

■ The semantic of C++ is complex, the Cling extension makes it even more complex and the 
CUDA extension too

■ A lot of implementation work is necessary to cover all cases
■ Solution

■ Still looking for an optimum solution 

■ The most important cases are covered

■ Raw input mode as workaround 
■ Possible improvements

■ Modifying the Clang parser to handle the “interactive” C++ semantic of Cling

35

Function references:
cling::utils::getWrapPoint
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Detail Problem: Catching errors

■ Problem 

■ The interpreter runtime and the user code use the same process and memory space. If a 
segmentation fault occurs in the user code, the entire interpreter crashes.

■ Solution

■ Catch the errors with code analysis before the code is executed.

■ Current solution is not generally applicable
■ e.g. Segmentation faults via indirect pointers
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Detail Problem: Clang CUDA expected a completed TU

■ Problem 

■ How does CUDA register kernels? No official documentation.

■ The Compiler generates the __cuda_module_ctor and __cuda_module_dtor functions which 
register and unregister the kernels and register the functions in the global constructor and 
destructor.

■ Cling creates the functions for each transaction. But Cling is lazy and only translates the first 
occurrence of __cuda_module_ctor into machine code and reuses it for each transaction. So 
you can only register one kernel in each cling instance.

■ Solution

■ Make the function names __cuda_module_ctor and __cuda_module_dtor unique.

37

Class references:
UnqiueCUDACtorDtorName
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Detail Problem: Embedding the Fatbin Generator

■ Problem 

■ The LLVM IR code of the device compiler pipeline is translated into Nvidia PTX code (a kind of 
assembler) and embedded in a fatbinary file (struct with meta data and ptx code).

■ Compared to the PTX code, the fatbin struct is not officially specified. Only Nvidia’s external 
fatbin tool is available for embedding PTX code in the fatbin struct.

■ Solution

■ Reimplementation of the fatbin tool based on a header file from the CUDA SDK in “llvm-
project-cxxjit”

■ Thanks to Hal Finkel
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Class references:
cling::IncrementalCUDADeviceCompiler
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