
Cling’s CUDA Backend: Interactive GPU development
with CUDA C++

Compiler as a Service project @ Princeton University

Simeon Ehrig

s.ehrig@hdzr.de

March 4th 2021

Research Group Computer Assisted Radiation Physics · FWKT · Simeon Ehrig · s.ehrig@hzdr.de · www.hzdr.de

Developing GPU applications

CPU/GPU Model

3

CPU GPU

Sources: Nvidia. CUDA Reference Guide
March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

CPU/GPU Model

4

CPU GPU

Sources: Nvidia. CUDA Reference Guide

■ Why GPU: Better performance for certain algorithms
■ Why CUDA: existing algorithms and widest distribution

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Writing CUDA code

5 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){
// …
// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
copy_kernel<int><<<32, 10>>>(a, b, c);

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);
// …

}

Writing CUDA code

6 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){
// …
// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
copy_kernel<int><<<32, 10>>>(a, b, c);

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);
// …

}

Device-Code

Host-Code

Compiler pipeline

Parsing and executing a statement

8

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Parsing and executing a statement

9

Input
foo()

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Class references:
cling::UserInterface

Parsing and executing a statement

10

Input

Metaparser

void __cling_Un1Qu32(void* vpClingValue)
{
 foo();
}

Tasks of the Metaparser
■ Transforms source code
■ Detects meta commands

■ e.g.: .L libz.so
■ Linking the shared library z

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Class references:
cling::Metaprocessor
cling::utils::getWrapPoint

Parsing and executing a statement

11

Input

Metaparser

Parser
Properties of the Parser
■ Non-modified Clang parser
■ Needs valid C++ code

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Class references:
cling::IncrementalParser
clang::Parser
clang::ASTConsumer

Parsing and executing a statement

12

Input

Metaparser

Parser

AST-Transformer

Tasks of the AST-Transformer
■ Enables functionality

■ e.g. CUDA device kernel inliner
■ Adds error protection

■ e.g. nullptr access
■ Adds cling specific features

■ Shadow namespaces for
redefinition

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Class references:
cling::ASTTransformer
llvm::legacy::PassManager

Parsing and executing a statement

13

Input

Metaparser

Parser

AST-Transformer

Code Generator

push rbp
mov rbp, rsp
sub rsp, 8
mov QWORD PTR [rbp-8], rdi
call foo()
nop
leave
ret

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Class references:
cling::IncrementalJIT
llvm::orc

Parsing and executing a statement

14

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

foo()
(int) 3

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Class references:
cling::IncrementalExecutor

Challenges

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes

16 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be
activated in Cling

■ Metaparser does not use the Clang parser

17

Sources: Google. gpucc: An Open-Source GPGPU Compiler

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be
activated in Cling

■ Metaparser does not use the Clang parser

3)How to integrate the device pipeline?

■ Cling was not designed for a second compiler pipeline

■ Solved a lot of different implementation tasks

18

Sources: Google. gpucc: An Open-Source GPGPU Compiler

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing

19 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects

20 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
■ The CUDA Runtime API was not used interactively until now

■ No experience

■ Some workarounds necessary

21 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Implementation

General Implementation – Data flow

23

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

 PTX
 Back-

end

Versions:
Cling 0.8
Clang/LLVM 5.0

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

General Implementation – Data flow

24

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

cling::Metaprocessor
cling::utils::getWrapPoint

cling::IncrementalParser
clang::Parser
clang::ASTConsumer

cling::IncrementalCUDADeviceCompiler
cling::Interpreter
llvm::NVPTX

cling::IncrementalJIT
llvm::orc

cling::Interpreter
cling::ASTTranformer
clang::Decl llvm::legacy::PassManager libcuda..so

cling::IncrementalExecutor

 PTX
 Back-

end

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

General Implementation – Program flow

25

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

 PTX
 Back-

end

Versions:
Cling 0.8
Clang/LLVM 5.0

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Implementation: Compiling Device Code

■ In the begin of cling::Interpreter::process(), parse(), declare() the device compiler pipeline is
executed

26 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Implementation: Compiling Device Code

■ cling::IncrementalCUDADeviceCompiler contains device compiler pipeline
■ Uses modified cling::Interpreter for parsing and transforming code and use custom back-end to

generate PTX and Fatbin code
■ Device compiler pipeline stages

■ Parsing code

■ AST transformations

■ Generating PTX code

■ Wrapping PTX code in Fatbin wrapper

■ Writing to file

■ Return to host compiler pipeline

■ The x86 CUDA code generator reads the Fatbin code from file

27 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

What is still missing

■ Some C++ and CUDA statements, although supported by
Clang 9.0 on CUDA 10.1

■ e.g. CUDA __constant__ memory

■ and CUDA global __device__ memory
■ Not all Cling features work with CUDA yet

■ e.g. redefinition of kernels via namespace shadowing
■ Metaparser does not detect all valid CUDA C++ statements
■ Error catching needs to be improved

28 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Application Areas

Application areas

■ Teaching GPU programming
■ Big, interactive simulation with GPUs
■ Easing development and debugging

30

https://github.com/alpaka-group/alpaka https://github.com/ComputationalRadiationPhysics/picongpu/

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Outlook

Outlook

■ Enable CUDA mode in ROOT
■ Fixes bugs to run matmul<alpaka::AccGpuCudaRt>
■ Add support for __constant__ memory (source code transformer)
■ Refactor device compiler to inherited class of cling::Interpreter
■ GSoC project: add redefinition support for CUDA mode

32

Versions:
Cling 0.8
Clang/LLVM 9.0

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Wish list

■ GPU CI
■ Documentation of concepts with linkage to the code (sphinx-doc, llvm

user documentation)

33 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Backup

Detail Problem: Metaparser + CUDA

■ Problem

■ The Metaparser is completely self-written and parses the “interactive” C++ semantic and the
meta commands of Cling

■ The semantic of C++ is complex, the Cling extension makes it even more complex and the
CUDA extension too

■ A lot of implementation work is necessary to cover all cases
■ Solution

■ Still looking for an optimum solution

■ The most important cases are covered

■ Raw input mode as workaround
■ Possible improvements

■ Modifying the Clang parser to handle the “interactive” C++ semantic of Cling

35

Function references:
cling::utils::getWrapPoint

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Detail Problem: Catching errors

■ Problem

■ The interpreter runtime and the user code use the same process and memory space. If a
segmentation fault occurs in the user code, the entire interpreter crashes.

■ Solution

■ Catch the errors with code analysis before the code is executed.

■ Current solution is not generally applicable
■ e.g. Segmentation faults via indirect pointers

36 March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Detail Problem: Clang CUDA expected a completed TU

■ Problem

■ How does CUDA register kernels? No official documentation.

■ The Compiler generates the __cuda_module_ctor and __cuda_module_dtor functions which
register and unregister the kernels and register the functions in the global constructor and
destructor.

■ Cling creates the functions for each transaction. But Cling is lazy and only translates the first
occurrence of __cuda_module_ctor into machine code and reuses it for each transaction. So
you can only register one kernel in each cling instance.

■ Solution

■ Make the function names __cuda_module_ctor and __cuda_module_dtor unique.

37

Class references:
UnqiueCUDACtorDtorName

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

Detail Problem: Embedding the Fatbin Generator

■ Problem

■ The LLVM IR code of the device compiler pipeline is translated into Nvidia PTX code (a kind of
assembler) and embedded in a fatbinary file (struct with meta data and ptx code).

■ Compared to the PTX code, the fatbin struct is not officially specified. Only Nvidia’s external
fatbin tool is available for embedding PTX code in the fatbin struct.

■ Solution

■ Reimplementation of the fatbin tool based on a header file from the CUDA SDK in “llvm-
project-cxxjit”

■ Thanks to Hal Finkel

38

Class references:
cling::IncrementalCUDADeviceCompiler

March 4th 2021 Cling’s CUDA Backend: Interactive GPU development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

