
Deep dive into the Xeus-based Cling kernel for Jupyter

QuantStack SAS - https://quantstack.net - @QuantStack

https://quantstack.net

Sylvain Corlay

Founder and CEO of QuantStack

Open Source Developer

- Jupyter Steering Committee Member
- Core developer of conda-forge.
- Co-creator of Voilà, Xeus, Xtensor

Open Source volunteer work

- Director at NumFOCUS
- Organizer of the PyData Paris Meetup, vice chair of JupyterCon.

🎖Recipient of the 2017 ACM Software System Award for Project Jupyter

 🐙 🐦 @SylvainCorlay

QuantStack is

- An open-source development studio specialized in scientific computing
- A team of maintainers of major opens-source projects of the stack

(Jupyter, Conda-Forge, Xtensor, Voilà, Mamba, Quetz, ROS...)

We provide

- professional support and development services for this ecosystem
- custom development and consulting services for the key software of the open-source

scientific computing ecosystem.

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

QuantStack - https://quantstack.net - @QuantStack

Jupyter's language agnosticism

https://quantstack.net

QuantStack - https://quantstack.net - @QuantStack

Jupyter's language agnosticism
The Kernel is the part of the Jupyter
infrastructure responsible for
executing the user's code.

From the perspective of the other
components of the Jupyter stack, a
kernel is merely a process
implementing a well-specified
communication protocol.

https://quantstack.net

QuantStack - https://quantstack.net - @QuantStack

Authoring Jupyter kernels
The existing kernels:

JavaScript, C++, Python, Julia, R,
Haskell, Go, C#, Robotframework,
OCaml, Perl, IDL, Scala, Fortran,
Octave, Scilab, SQLite, Ruby…

There are Jupyter kernels for
dozens of languages.

But these kernels have very different
levels of quality and support for the
features of the protocol.

How to make new language kernel?

1. Rewrite in from scratch in e.g. the target
language… Not that easy.

○ Deal with a complex concurrent programming
models

○ Make use of the ZMQ interprocess
communication library

○ Cryptographically sign messages
○ Properly implement JSON messages schemas

2. Use a framework
○ Ipykernel
○ Xeus

https://quantstack.net

QuantStack - https://quantstack.net - @QuantStack

Authoring Jupyter kernels
The wrapper kernel approach

IPykernel includes a reference
implementation of the Kernel protocol.

To make a kernel with ipykernel, inherit from
ipykernel.kernelbase.Kernel and
implement the language-specific parts in the
derived class.

This is the approach used for the kernel
shipped with Cling.

Issues with the wrapper approach:

- Dependency on the Python runtime.
(consequences for the packaging of the Cling
project).

- The wrapped interpreter may not have a
Python API, and we need to make one.

- We may need to expose the API of the
kernel to the target language for
advanced use cases (widgets, rich
display...).

- A native implementation may be more
efficient.

https://quantstack.net

QuantStack - https://quantstack.net - @QuantStack

Authoring Jupyter kernels
What is Xeus?

Xeus is a modern C++ implementation of the
Jupyter protocol. It is not a kernel, but a tool to
make new kernels.

To make a kernel with Xeus, inherit from
xeus::xinterpreter and implement the
language-specific parts in the derived class.

This is the approach used in xeus-cling.

Our motivation for starting Xeus

- We were asked by a client to make a
lightweight kernel for a DSL. IPykernel
seemed overkill and too heavy.

- We think that the kernel protocol is
stable enough for a strongly typed
reference implementation to exist.

- Most interpreters are written in C or
offer a C API. This makes it easy to
embed them in a C++ application.

https://quantstack.net

Xeus: an ecosystem of Jupyter kernels
Xeus-python: A xeus-based Jupyter kernel for the Python
language

- GitHub Try it Here
- Used in SlicerJupyter for embedding in the Slicer Qt application.
- Supports the new JupyterLab interactive debugger.

Xeus-cling: A xeus & cling-based Jupyter for the C++ language
- GitHub Try it Here
- Started as a demonstrator for the Xeus framework. Used to teach C++

at Université Paris Sud.

Xeus-SQL: (And Xeus-SQLite): Xeus-based kernels for SQL
- GitHub Try it Here

Xeus-Robot: Xeus-based kernel for RobotFramework
- GitHub Try it Here
- RobotFramework is an open-source language and framework for

Robotic Process Automation.

LFortran: LFortran is an LLVM-based Fortran compiler and
interpreter. It includes a Xeus-based kernel

- GitHub Try it Here

And many more (xeus-octave,
xeus-fift, JuniperKernel)...

https://github.com/jupyter-xeus/xeus-python/
https://mybinder.org/v2/gh/jupyter-xeus/xeus-python/stable?urlpath=/lab/tree/notebooks/xeus-python.ipynb
https://github.com/jupyter-xeus/xeus-cling/
https://mybinder.org/v2/gh/jupyter-xeus/xeus-cling/stable?filepath=notebooks/xcpp.ipynb
https://github.com/jupyter-xeus/xeus-sql
https://mybinder.org/v2/gh/jupyter-xeus/xeus-sql/stable?urlpath=lab/tree/examples/SQLite.ipynb
https://github.com/jupyter-xeus/xeus-robot
https://mybinder.org/v2/gh/jupyter-xeus/xeus-robot/stable?urlpath=/lab/tree/notebooks/xrobot.ipynb
https://github.com/lfortran/lfortran
https://mybinder.org/v2/gh/jupyter-xeus/xeus-robot/stable?urlpath=/lab/tree/notebooks/xrobot.ipynb

Xeus-cling: A C++ Jupyter kernel
… based on cling and Xeus

Never give a live demo

https://mybinder.org/v2/gh/jupyter-xeus/xeus-cling/stable?filepath=notebooks/xcpp.ipynb

Xeus-cling: redirecting streams

The main means of printing
are redirected to the
front-end.

- std::cout and std::cerr, asl
well as printf are
redirected to the
front-end.

However.

- std::clog prints to the
kernel standard output,
which can be used for
logging.

Xeus-cling: inline help

The "?" magic can be used to
get inline help on types and
functions.

- For the standard library
makes use of
cppreference.

- This is extensible for
user-defined libraries.
(Demo example with
xtensor)

Xeus-cling: rich outputs

Xeus-cling leverages the
Jupyter rich mime type
rendering system.

- This can be defined for any
type by specializing the
mime_bundle_repr
function for the said type.

- This overload is picked up
by xeus-cling through
argument dependent
lookup.

Rich output
Examples with

- Xtensor and Xframe (HTML tables for
visualizing tensors)

- Symengine (MathJax)

Xeus-cling: interactive widgets

Interactive widgets

- A C++ backend for the
Jupyter interactive widgets
is available in the xwidgets
package.

Xeus-cling: more data visualization

Jupyter widgets are a
framework

- Xleaflet
- Xwebrtc
- Xplot

And many more coming…

An opportunity for interactive
C++: leverage the huge
ecosystem of JavaScript data
visualization tools.

Xeus Cling: how to get started

We provide a xeus-cling package on conda-forge.
It can be installed with mamba or conda

mamba install xeus-cling

You can also try it out online on binder.

Xeus Cling: about the future?

- Provide a VS2019 build on conda-forge to fully support windows
- Windows support is tested on CI but we don't provide a build for it
- We will wait for the LLVM9-based version of cling.

- Work with library authors on including cling pragmas in library headers
- https://github.com/xtensor-stack/xtensor-blas/blob/master/include/xtensor-blas/xblas_config

_cling.hpp.in
- Dashboarding with Voilà and Xeus-cling

- build notebooks into full executables that don't require the cling runtime, and respond to the
protocol as static backend for Voilà apps

- Subject of an internship?
- Work with upstream on improving rich mime type rendering?
- What is needed for a an upstream adoption in ROOT?

- Provide an extensible magics system providing all the dots commands?
- Implementing the Jupyter Debug Protocol in xeus-cling to enable visual

debugging in JupyterLab.

https://github.com/xtensor-stack/xtensor-blas/blob/master/include/xtensor-blas/xblas_config_cling.hpp.in
https://github.com/xtensor-stack/xtensor-blas/blob/master/include/xtensor-blas/xblas_config_cling.hpp.in

