pd cus

Deep dive into the Xeus-based Cling kernel for Jupyter

QuantStack SAS - https://quantstack.net - @QuantStack

https://quantstack.net

Sylvain Corlay

Founder and CEO of QuantStack

Open Source Developer

- Jupyter Steering Committee Member
- Core developer of conda-forge.
- Co-creator of Voila, Xeus, Xtensor

Open Source volunteer work

- Director at NumFOCUS
- Organizer of the PyData Paris Meetup, vice chair of JupyterCon.

W Recipient of the 2017 ACM Software System Award for Project Jupyter

¥ % @SylvainCorlay

Quant>tack

Scientific Computing

QuantStack is

- An open-source development studio specialized in scientific computing
- A team of maintainers of major opens-source projects of the stack

(Jupyter, Conda-Forge, Xtensor, Voila, Mamba, Quetz, ROS..)

We provide

- professional support and development services for this ecosystem
- custom development and consulting services for the key software of the open-source
scientific computing ecosystem.

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

Jupyter's language agnosticism

@ ® @
o AR .
o Jupyter »

) Sparks

o0 . F#

4

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

Jupyter's language agnosticism

The Kernel is the part of the Jupyter
infrastructure responsible for
executing the user's code.

From the perspective of the other
components of the Jupyter stack, a
kernel is merely a process
implementing a well-specified
communication protocol.

Jupyter Frontends

Notebook Qt Console Spyder Jupyter Lab

Jupyter Kernel protocol

A A

Python Julia R C++ Sage Scala

Jupyter Kernels

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

Authoring Jupyter kernels

The existing kernels:

JavaScript, C++, Python, Julia, R,
Haskell, Go, C#, Robotframework,
OCaml, Perl, IDL, Scala, Fortran,
Octave, Scilab, SQLite, Ruby...

There are Jupyter kernels for
dozens of languages.

But these kernels have very different
levels of quality and support for the
features of the protocol.

How to make new language kernel?

1. Rewrite in from scratch in e.g. the target
language... Not that easy.

o

o

@)
@)

Deal with a complex concurrent programming
models

Make use of the ZMQ interprocess
communication library

Cryptographically sign messages

Properly implement JSON messages schemas

2. Use a framework

©)
@)

Ipykernel
Xeus

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

Authoring Jupyter kernels

The wrapper kernel approach

IPykernel includes a reference
implementation of the Kernel protocol.

To make a kernel with ipykernel, inherit from
ipykernel.kernelbase.Kernel and
implement the language-specific parts in the
derived class.

This is the approach used for the kernel
shipped with Cling.

Issues with the wrapper approach:

Dependency on the Python runtime.
(consequences for the packaging of the Cling
project).

The wrapped interpreter may not have a
Python API, and we need to make one.

We may need to expose the API of the
kernel to the target language for
advanced use cases (widgets, rich
display...).

A native implementation may be more
efficient.

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

Authoring Jupyter kernels

What is Xeus?

Xeus is a modern C++ implementation of the
Jupyter protocol. It is not a kernel, but a tool to
make new kernels.

To make a kernel with Xeus, inherit from
xeus: :xinterpreter and implement the

language-specific parts in the derived class.

This is the approach used in xeus-cling.

Our motivation for starting Xeus

- We were asked by a client to make a
lightweight kernel for a DSL. IPykernel
seemed overkill and too heavy.

- We think that the kernel protocol is
stable enough for a strongly typed
reference implementation to exist.

- Most interpreters are written in C or

offer a C API. This makes it easy to
embed them in a C++ application.

QuantStack - https://quantstack.net - @QuantStack

https://quantstack.net

Xeus: an ecosystem of Jupyter kernels

Xeus-python: A xeus-based Jupyter kernel for the Python $ jupyter console --kernel=fortran
Run with XEUS 0.24.1
Ianguage Jupyter console 6.1.0
- GitHub Try it Here
- Used in SlicerJupyter for embedding in the Slicer Qt application. LFortran

Jupyter kernel for Fortran
Fortran

- Supports the new JupyterlLab interactive debugger.

Xeus-cling: A xeus & cling-based Jupyter for the C++ language X

- GitHub Try it Here
- Started as a demonstrator for the Xeus framework. Used to teach C++

at Université Paris Sud. X
17.500000

Xeus-SQL: (And Xeus-SQLite): Xeus-based kernels for SQL i
- GitHub Try it Here

Xeus-Robot: Xeus-based kernel for RobotFramework
- GitHub Try it Here
- RobotFramework is an open-source language and framework for
Robotic Process Automation.

LFortran: LFortran is an LLVM-based Fortran compiler and

interpreter. It includes a Xeus-based kernel
- GitHub Try it Here

And many more (xeus-octave,
xeus-fift, JuniperKernel)...

https://github.com/jupyter-xeus/xeus-python/
https://mybinder.org/v2/gh/jupyter-xeus/xeus-python/stable?urlpath=/lab/tree/notebooks/xeus-python.ipynb
https://github.com/jupyter-xeus/xeus-cling/
https://mybinder.org/v2/gh/jupyter-xeus/xeus-cling/stable?filepath=notebooks/xcpp.ipynb
https://github.com/jupyter-xeus/xeus-sql
https://mybinder.org/v2/gh/jupyter-xeus/xeus-sql/stable?urlpath=lab/tree/examples/SQLite.ipynb
https://github.com/jupyter-xeus/xeus-robot
https://mybinder.org/v2/gh/jupyter-xeus/xeus-robot/stable?urlpath=/lab/tree/notebooks/xrobot.ipynb
https://github.com/lfortran/lfortran
https://mybinder.org/v2/gh/jupyter-xeus/xeus-robot/stable?urlpath=/lab/tree/notebooks/xrobot.ipynb

Xeus-cling: A C++ Jupyter kernel
... based on cling and Xeus

Never give a live demo

https://mybinder.org/v2/gh/jupyter-xeus/xeus-cling/stable?filepath=notebooks/xcpp.ipynb

° File Edit View Run Kernel Tabs Settings Help

Files

Commands Running

Cell Tools

Tabs

G #| xcpp.ipynb @
o0 » = C Markdown v

Output and error streams

std::coutand std: :cerr are redirected to the notebook frontend.

#include <iostream>
std::cout << "some output" << std::endl;

some output

std::cerr << "some error" << std::endl;

some error
#include <stdexcept>

throw std::runtime_error("Unknown exception");

Standard Exception: Unknown exception

Omitting the ; in the last statement of a cell results in an output being printed
int j = 5;
J

5

c++14 O

Xeus-cling: redirecting streams

The main means of printing
are redirected to the
front-end.

- std::cout and std::cerr, asl
well as printf are
redirected to the
front-end.

However.

- std:clog prints to the
kernel standard output,
which can be used for

logging.

Files

Commands Running

Cell Tools

Tabs

Xeus-cling: inline help

File Edit View Run Kernel Tabs Settings Help

B + X

In

14t

A Untitled.ipynb @
OB » = C Code v

?std: :vector

cppreference.com Create account

Page Discussion

C++ Containers library std::vector

std:vector

Defined in header <vector>
template<
class T, -
class Allocator = std::allocator<T>
> class vector;
namespace pmr {
template <class T>

using vector = std::vector<T, std::pmr::polymorphic_allocator<T>>; @

1) std: :vector is a sequence container that encapsulates dynamic size arrays.

C++14 O

View Edit History

(since C++17)

The "?" magic can be used to
get inline help on types and
functions.

- For the standard library
makes use of
cppreference.

- Thisis extensible for
user-defined libraries.
(Demo example with
xtensor)

Files ()

Commands Running

Cell Tools

Tabs

Xeus-cling: rich outputs

File Edit View Run Kernel Tabs Settings Help

e il Xeus-cling leverages the
B + X O O » m C Markdownv c++14 O o .
):eus::xjson mime_bundle_repr(const image& i) Jupyter rlch mlme type
B < et = il caasiens oda] mshitfhoiatr ()3 rendering system.
return bundle;
1
- This can be defined for any
;:;;;mage marie("images/marie.png"); type by SpeC|a||Z|ng the
mime_bundle_repr
function for the said type.
- This overload is picked up

by xeus-cling through
argument dependent
lookup.

Rich output

Examples with

Xtensor and Xframe (HTML tables for
visualizing tensors)
Symengine (MathJax)

symengine.ipynb

File Edit

B + X

l [4]
I [4]
simple @D

View Run Kemel Tabs Settings Help
D B » m C » XDownload & & O)GitHub &@Binder Code v c++17 O
Installation

Install xeus-cling :
conda install -c conda-forge xeus-cling

#include <symengine/expression.h>
using SymEngine::Expression;

Expression x("x");

auto ex = pow(x+sqrt(Expression(2)), 10);
ex

(x+v2)"
expand(ex)

32 4+ 160y/2x + 9601/2x3 + 1008v/2x° + 2401/2x7 + 101/2

< +720x% + 1680x* + 840x° + 90x® + x'©

0 ﬂ 0 & C++17|Idle Mem: 250.85/ 2048.00 MB Mode: Command @ Ln1,Coll symengine.ipynb

%

G » % O

]

0 1& cC++4|1dle

File Edit View Run Kernel Tabs Settings Help

[M] xtensor.ipynb [
B+ X O O » = C Code v
Using linspace, arange, ones, zeros

#include "xtensor/xbuilder.hpp"

xt::xarray<double> ar = xt::linspace<double>(0.0, 10.0, 12);
ar.reshape({4, 3});

ar
0. 0.909091 1.818182
2.727273 3.636364 4.545455
5.454545 6.363636 7.272727
8.181818 9.090909 16.

xt::xarray<double> fones = xt::ones<float>({2, 2});

fones
1. 1
1.0 1

1 {8 C++14|Idle Mode: Command & Ln1,Coll

File Edit View Run Kernel Tabs Settings Help

#| xframe.ipynb L]
B+ XDO» m C »
auto time axis = xf::axis({"2018-01-01",

X Download & & O GitHub
"2018-01-02",

& Binder Markdown v

"2018-01-03", “2018-01-04", "2018-01-05",

auto dry temperature = variable type(
dry temperature data,

{"date", time_axis},
{"city", xf::axis({"London", "Paris", “Brussels"})}

London Paris Brussels

2018-01-01 N/A 23.3501 24.6887

2018-01-02 | 17.2103 18.6817 20.4722

2018-01-03 | 16.8838 N/A 24.9646

2018-01-04 | 24.6769 22.2584 24.8111

2018-01-05 | 16.6986 22.9811 17.9703

2018-01-06 | 15.0478 16.1246 21.3976

1.2. Indexing and selecting data

Like xarray, xframe supports four different kinds of indexing as described below:

Mem: 343.34 / 2048.00 MB Mode: Command

c++14 O

xtensor.ipynb

c++14 O
“2018-01-06

@ Ln1,Coll xirame.ipynb

Files

Commands Running

Cell Tools

Tabs

Xeus-cling: interactive widgets

File Edit View Run Kernel Tabs Settings Help

£} Launcher

B + X

X # xwidgets.ipynt ®
D O » m C Code v

Numericalwidgets 9|

Defining a Slider Widget

#include "xwidgets/xslider.hpp"
xw::slider<double> slider;

slider

: slider.value = 20;

slider.value() // Reading the value requires using the call operator

// changine some more properties
slider.max = 40;
slider.style().handle_color = "blue";
slider.orientation = "vertical";
slider.description = "A slider";

#include "xcpp/xdisplay.hpp"

using xcpp::display;

... o Interactive widgets
- A C++ backend for the
Jupyter interactive widgets
Is available in the xwidgets
package.

Files

Commands Running

Cell Tools

Tabs

Xeus-cling: more data visualization

File Edit View Run Kernel Tabs Settings Help

£ Launcher X " xleaflet_split_n ®
B + X O O » m C Code v
la Vella
Portugal Valéncia Palma

Lisboa

Malaga
Oran

Alger

Constantine

C++14 @

© Cxonje

Napoli BeooaAoy

Palermo EAAG

gl

Quigas Leaflet | Map data (c) OpenStreetMap contributors

auto right_layer = x1f::basemap({"NASAGIBS", "ModisTerraTrueColorCR"}, "2017-11-11");
auto left_layer = x1f::basemap({"NASAGIBS", "ModisAquaBands721CR"}, "2017-11-11");

auto control = x1f::split_map_control_generator()

.left_layer (left_layer)

.right_layer(right_layer)

.finalize();
map.add_control(control)

| oo

Jupyter widgets are a
framework

- Xleaflet
- Xwebrtc
- Xplot

And many more coming...

An opportunity for interactive
C++: leverage the huge
ecosystem of JavaScript data
visualization tools.

Xeus Cling: how to get started

We provide a xeus-cling package on conda-forge.
It can be installed with mamba or conda

mamba install xeus-cling

You can also try it out online on binder.

Xeus Cling: about the future?

Provide a VS2019 build on conda-forge to fully support windows
- Windows support is tested on Cl but we don't provide a build for it
- We will wait for the LLVM9-based version of cling.
Work with library authors on including cling pragmas in library headers
- https://aithub.com/xtensor-stack/xtensor-blas/blob/master/include/xtensor-blas/xblas_config
_cling.hpp.in
Dashboarding with Voila and Xeus-cling
- build notebooks into full executables that don't require the cling runtime, and respond to the
protocol as static backend for Voila apps
- Subject of an internship?
Work with upstream on improving rich mime type rendering?
What is needed for a an upstream adoption in ROOT?
- Provide an extensible magics system providing all the dots commands?
Implementing the Jupyter Debug Protocol in xeus-cling to enable visual

debugging in JupyterlLab.

https://github.com/xtensor-stack/xtensor-blas/blob/master/include/xtensor-blas/xblas_config_cling.hpp.in
https://github.com/xtensor-stack/xtensor-blas/blob/master/include/xtensor-blas/xblas_config_cling.hpp.in

