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Accelerating LLM Training in C++ with Clad | Introduction

The Challenge of LLM Training
• Large Language Models (LLMs) are computationally expensive to train.
• Python frameworks (PyTorch, TensorFlow) dominate but can have performance 

overhead, especially in C++-centric HPC environments.
• Goal: Leverage C++ performance and compiler-level Automatic Differentiation (AD) for 

more efficient LLM training.
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Our Approach: clad for Backpropagation
• Idea: Implement the LLM entirely in C++, then use Clad — a Clang plugin for source-to-

source AD — to automatically generate the gradient code (backpropagation) at compile 
time.

• Hypothesis: A static, compile-time approach can enable deeper compiler optimizations 
across the entire computation graph.
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Two Paths to Training
Phase 1: cladtorch

(Flexibility First)
Phase 2: C-Style Engine

(Performance First)

• Design: PyTorch-style, Object-Oriented 
API

• Data: Tensor class
• State: Encapsulated in objects with 

RAII & cleanup
• Result: Functional but high overhead

• Design: llm.c-inspired, procedural
• Data: Raw float* arrays
• State: Manually managed in a struct
• Result: Minimalist and extremely fast
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Cladtorch: C++ Tensor Operations
• cladtorch Library:
‣ Successfully developed a custom C++ tensor library from the ground up.
‣ Provides core tensor operations, neural network layers (Linear, LayerNorm, Softmax), 

and loss functions.
‣ Designed specifically for optimal compatibility with Clad.

• GPT-2 Forward Pass:
‣ Implemented a full GPT-2 model (125M parameters) using cladtorch.
‣ The forward pass is functional and validates the library’s correctness.
‣ Achieves ~12 tokens/second for inference on a single CPU core.
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Cladtorch: End-to-End Differentiation
• We can apply clad::gradient to the entire model’s loss function.
:/ The goal: Differentiate the whole loss function w.r.t model params
float gpt2_loss(const GPT2& model, const ITensor& input, const ITensor& targets) {
    FTensor probs = model.forward(input);
    return cross_entropy_loss(probs, targets);
}

:/ This now works!
auto grad_fn = clad::gradient(gpt2_loss, "model"); :/ Differentiate w.r.t. 'model'

• Clad successfully processes the entire, complex C++ codebase—including loops, 
custom classes, and nested function calls—to generate the complete backward pass.
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Cladtorch: Backpropagation
Clad transforms human-written forward pass code into an efficient backward pass. This 

required writing custom derivatives for cladtorch operations to guide the process.

Human-Written C++ Forward Pass

:/ Inside gpt2::LayerNorm
FTensor forward(const FTensor& 
input) const {
  auto norm = input.norm();
  auto tmp = norm * weight;
  return tmp + bias;
}

Clad-Generated Backward Pass

void forward_pullback(
  const FTensor& input, FTensor _d_y,
  gpt2::LayerNorm* _d_this, FTensor* _d_input
) const {
  op_plus_pullback(tmp, this:>bias, _d_y, 
&_d_tmp, &_d_this:>bias);
  op_star_pullback(norm, this:>weight, _d_tmp, 
&_d_norm, &_d_this:>weight);
  norm_pullback(input, _d_norm, _d_input);
}
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Anatomy
Core Principle: Avoid all sources of C++ abstraction overhead.

1. Pre-allocated Memory Arena:
• A single, large float* buffer holds all model parameters, gradients, and activations.
‣ Eliminates dynamic memory allocation during training and improves data locality/

cache performance.
‣ No freeing or reallocations of temporaries due to RAII, ensuring efficient memory 

use.
• The GPT2 struct simply holds pointers into the main memory arena.

2. Stateless C-Style Kernels:
• All operations (matmul, softmax, layernorm) are pure functions acting on these pre-

allocated buffers.
‣ Simple, predictable, and easy for the clad and the compiler to optimize.
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Clad Integration: A Perfect Match for C-Style Kernels
The procedural design simplified Clad integration significantly by mapping each forward 
kernel to its hand-optimized backward counterpart using clad::custom_derivatives. Clad 
can then generate the backpropagation code that orchestrates these kernels.

1. Forward Kernel

:/ Stateless function
void layernorm_forward(
  float* out, float* inp,
  float* weight, float* bias,
  int N, int C
);

3. Clad Pullbacks

void layernorm_forward_pullback(
  float* out, float* inp,
  float* weight, float* bias,
  int N, int C,
  float* dout, float* dinp, 
  float* dweight, float* dbias
);
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Performance
• System: Apple M3 Max CPU
• Task: Full GPT-2 training iteration (forward + backward pass)
• Result: Our C++ implementation is consistently faster than PyTorch on CPU.

Config
(Batch, SeqLen)

Clad (optimized) (ms) PyTorch (ms) Speedup

B=1, T=16 111 196 1.77 ×
B=1, T=32 114 211 1.85 ×
B=2, T=16 113 216 1.91 ×
B=1, T=64 115 241 2.1 ×
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Performance Benchmarks
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Performance Analysis
• 1. No Python Overhead:
‣ The entire training loop is a compiled, monolithic binary. No calls between Python 

and C++, no GIL, no dynamic dispatch.

• 2. Cache-Friendly Memory Layout:
‣ The single pre-allocated buffer leads to excellent data locality, and no freeing or 

reallocations of temporaries due to RAII (like in cladtorch), ensuring efficient memory 
use.

• 3. Direct BLAS & Kernel Fusion:
‣ We call optimized libraries like Apple’s Accelerate framework directly for cblas_sgemm 

without framework abstractions.
‣ This design allows for manual kernel fusion.
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Project Summary & Key Achievements
• Two functional C++ implementations for LLM training: a flexible prototype and one for 

high-performance.
• Successfully demonstrated Clad’s capability for end-to-end differentiation of a real-

world, complex model like GPT-2.
• Achieved a significant performance milestone: The optimized C++ implementation 

outperforms PyTorch on CPU.
• Created a strong foundation for future research into C++-based ML and GPU 

acceleration.
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Future Work/Promising Directions
1. GPU Acceleration (CUDA):

• The C-style, optimized kernel design is an ideal foundation for porting to GPUs.
• This would allow us to investigate the performance characteristics of this on 

hardware best suited for training.

2. Clad-Driven Kernel Fusion:
• Leverage Clad’s static analysis capabilities to automatically fuse sequential 

operations.
• Example: Fusing softmax and cross_entropy_loss into a single, more efficient kernel.
• Benefit: Reduces memory bandwidth bottlenecks and kernel launch overhead.
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