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The Challenge of LLM Training

« Large Language Models (LLMs) are computationally expensive to train.

« Python frameworks (PyTorch, TensorFlow) dominate but can have performance
overhead, especially in C++-centric HPC environments.

« Goal: Leverage C++ performance and compiler-level Automatic Differentiation (AD) for
more efficient LLM training.
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Our Approach: clad for Backpropagation

« Idea: Implement the LLM entirely in C++, then use Clad — a Clang plugin for source-to-
source AD — to automatically generate the gradient code (backpropagation) at compile
time.

« Hypothesis: A static, compile-time approach can enable deeper compiler optimizations
across the entire computation graph.
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Two Paths to Training

Phase 1: cladtorch Phase 2: C-Style Engine
(Flexibility First) (Performance First)

Design: PyTorch-style, Object-Oriented
API

Data: Tensor class

State: Encapsulated in objects with
RAII & cleanup

Result: Functional but high overhead

Design: 11m.c-inspired, procedural
Data: Raw float* arrays

State: Manually managed in a struct
Result: Minimalist and extremely fast
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Cladtorch: C++ Tensor Operations

e cladtorch Library:
» Successfully developed a custom C++ tensor library from the ground up.
» Provides core tensor operations, neural network layers (Linear, LayerNorm, Softmax),
and loss functions.
» Designed specifically for optimal compatibility with Clad.
e GPT-2 Forward Pass:
» Implemented a full GPT-2 model (125M parameters) using cladtorch.
» The forward pass is functional and validates the library’s correctness.
» Achieves ~12 tokens/second for inference on a single CPU core.
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Cladtorch: End-to-End Differentiation

We can apply clad:: gradient to the entire model’s loss function.

// The goal: Differentiate the whole loss function w.r.t model params

float gpt2_loss(const GPT2& model, const ITensor& input, const ITensor& targets) {
FTensor probs = model.forward(input);
return cross_entropy_loss(probs, targets);

}

// This now works!
auto grad_fn = clad::gradient(gpt2_1loss, "model"); // Differentiate w.r.t. 'model’

Clad successfully processes the entire, complex C++ codebase—including loops,
custom classes, and nested function calls—to generate the complete backward pass.



Cladtorch: Backpropagation
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Clad transforms human-written forward pass code into an efficient backward pass. This
required writing custom derivatives for cladtorch operations to guide the process.

Human-Written C++ Forward Pass

// Inside gpt2::LayerNorm
FTensor forward(const FTensor&
input) const {
auto norm = input.norm();
auto tmp = norm * weight;
return tmp + bias;

}.
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Clad-Generated Backward Pass

void forward_pullback(

)

const FTensor& input, FTensor _d_y,

gpt2:: LayerNorm* _d_this, FTensor* _d_input
const {

op_plus_pullback(tmp, this—bias, _d_y,

S&_d_tmp, & d_this—bias);

op_star_pullback(norm, this—weight, _d_tmp,

&_d_norm, &_d_this—weight);

hy

norm_pullback(input, _d_norm, _d_input);

;] =Y
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Anatomy

Core Principle: Avoid all sources of C++ abstraction overhead.

1. Pre-allocated Memory Arena:
e Asingle, large floatx buffer holds all model parameters, gradients, and activations.
» Eliminates dynamic memory allocation during training and improves data locality/
cache performance.
» No freeing or reallocations of temporaries due to RAII, ensuring efficient memory
use.
« The 6PT2 struct simply holds pointers into the main memory arena.

2. Stateless C-Style Kernels:
 All operations (matmul, softmax, layernorm) are pure functions acting on these pre-
allocated buffers.
» Simple, predictable, and easy for the clad and the compiler to optimize.
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Clad Integration: A Perfect Match for C-Style Kernels

The procedural design simplified Clad integration significantly by mapping each forward
kernel to its hand-optimized backward counterpart using clad:: custom_derivatives. Clad
can then generate the backpropagation code that orchestrates these kernels.

1. Forward Kernel 3. Clad Pullbacks
// Stateless function void layernorm_forward_pullback(

void layernorm_forward( float* out, float* inp,
float*x out, float* inp, float* weight, floatx bias,
float* weight, floatx bias, int N, int C,
int N, int C floatx dout, floatx dinp,

); float* dweight, float* dbias

);
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Performance

« System: Apple M3 Max CPU
« Task: Full GPT-2 training iteration (forward + backward pass)
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e Result: Our C++ implementation is consistently faster than PyTorch on CPU.

Config

(Batch, Seqlen)
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Clad (optimized) (ms) PyTorch (ms) Speedup

111
114
113
115

196
211
216
241

1.77 x
1.85 x
1.91 x
2.1 x
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Performance Benchmarks
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Performance Analysis

e 1. No Python Overhead:
» The entire training loop is a compiled, monolithic binary. No calls between Python
and C++, no GIL, no dynamic dispatch.

« 2. Cache-Friendly Memory Layout:
» The single pre-allocated buffer leads to excellent data locality, and no freeing or
reallocations of temporaries due to RAII (like in cladtorch), ensuring efficient memory
use.

« 3. Direct BLAS & Kernel Fusion:
» We call optimized libraries like Apple’s Accelerate framework directly for cblas_sgemm
without framework abstractions.
» This design allows for manual kernel fusion.
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Project Summary & Key Achievements

« Two functional C++ implementations for LLM training: a flexible prototype and one for
high-performance.

« Successfully demonstrated Clad’s capability for end-to-end differentiation of a real-
world, complex model like GPT-2.

« Achieved a significant performance milestone: The optimized C++ implementation
outperforms PyTorch on CPU.

« Created a strong foundation for future research into C++-based ML and GPU
acceleration.
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Future Work/Promising Directions

1. GPU Acceleration (CUDA):
« The C-style, optimized kernel design is an ideal foundation for porting to GPUs.
« This would allow us to investigate the performance characteristics of this on
hardware best suited for training.

2. Clad-Driven Kernel Fusion:
« Leverage Clad’s static analysis capabilities to automatically fuse sequential
operations.
« Example: Fusing softmax and cross_entropy_loss into a single, more efficient kernel.
« Benefit: Reduces memory bandwidth bottlenecks and kernel launch overhead.
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