
Accelerating LLM Training in C++ with Clad

GSoC 2025 Final Presentation

Rohan Timmaraju, October 2025
Compiler Research Group

Accelerating LLM Training in C++ with Clad | Introduction

The Challenge of LLM Training
• Large Language Models (LLMs) are computationally expensive to train.
• Python frameworks (PyTorch, TensorFlow) dominate but can have performance

overhead, especially in C++-centric HPC environments.
• Goal: Leverage C++ performance and compiler-level Automatic Differentiation (AD) for

more efficient LLM training.

Rohan Timmaraju, October 2025 2

Accelerating LLM Training in C++ with Clad | Introduction

Our Approach: clad for Backpropagation
• Idea: Implement the LLM entirely in C++, then use Clad — a Clang plugin for source-to-

source AD — to automatically generate the gradient code (backpropagation) at compile
time.

• Hypothesis: A static, compile-time approach can enable deeper compiler optimizations
across the entire computation graph.

Rohan Timmaraju, October 2025 3

The Journey

Accelerating LLM Training in C++ with Clad | The Journey

Two Paths to Training
Phase 1: cladtorch

(Flexibility First)
Phase 2: C-Style Engine

(Performance First)

• Design: PyTorch-style, Object-Oriented
API

• Data: Tensor class
• State: Encapsulated in objects with

RAII & cleanup
• Result: Functional but high overhead

• Design: llm.c-inspired, procedural
• Data: Raw float* arrays
• State: Manually managed in a struct
• Result: Minimalist and extremely fast

Rohan Timmaraju, October 2025 5

Cladtorch

Accelerating LLM Training in C++ with Clad | Cladtorch

Cladtorch: C++ Tensor Operations
• cladtorch Library:
‣ Successfully developed a custom C++ tensor library from the ground up.
‣ Provides core tensor operations, neural network layers (Linear, LayerNorm, Softmax),

and loss functions.
‣ Designed specifically for optimal compatibility with Clad.

• GPT-2 Forward Pass:
‣ Implemented a full GPT-2 model (125M parameters) using cladtorch.
‣ The forward pass is functional and validates the library’s correctness.
‣ Achieves ~12 tokens/second for inference on a single CPU core.

Rohan Timmaraju, October 2025 7

Accelerating LLM Training in C++ with Clad | Cladtorch

Cladtorch: End-to-End Differentiation
• We can apply clad::gradient to the entire model’s loss function.
:/ The goal: Differentiate the whole loss function w.r.t model params
float gpt2_loss(const GPT2& model, const ITensor& input, const ITensor& targets) {
 FTensor probs = model.forward(input);
 return cross_entropy_loss(probs, targets);
}

:/ This now works!
auto grad_fn = clad::gradient(gpt2_loss, "model"); :/ Differentiate w.r.t. 'model'

• Clad successfully processes the entire, complex C++ codebase—including loops,
custom classes, and nested function calls—to generate the complete backward pass.

Rohan Timmaraju, October 2025 8

Accelerating LLM Training in C++ with Clad | Cladtorch

Cladtorch: Backpropagation
Clad transforms human-written forward pass code into an efficient backward pass. This

required writing custom derivatives for cladtorch operations to guide the process.

Human-Written C++ Forward Pass

:/ Inside gpt2::LayerNorm
FTensor forward(const FTensor&
input) const {
 auto norm = input.norm();
 auto tmp = norm * weight;
 return tmp + bias;
}

Clad-Generated Backward Pass

void forward_pullback(
 const FTensor& input, FTensor _d_y,
 gpt2::LayerNorm* _d_this, FTensor* _d_input
) const {
 op_plus_pullback(tmp, this:>bias, _d_y,
&_d_tmp, &_d_this:>bias);
 op_star_pullback(norm, this:>weight, _d_tmp,
&_d_norm, &_d_this:>weight);
 norm_pullback(input, _d_norm, _d_input);
}

Rohan Timmaraju, October 2025 9

Optimized Implementation

Accelerating LLM Training in C++ with Clad | Optimized Implementation

Anatomy
Core Principle: Avoid all sources of C++ abstraction overhead.

1. Pre-allocated Memory Arena:
• A single, large float* buffer holds all model parameters, gradients, and activations.
‣ Eliminates dynamic memory allocation during training and improves data locality/

cache performance.
‣ No freeing or reallocations of temporaries due to RAII, ensuring efficient memory

use.
• The GPT2 struct simply holds pointers into the main memory arena.

2. Stateless C-Style Kernels:
• All operations (matmul, softmax, layernorm) are pure functions acting on these pre-

allocated buffers.
‣ Simple, predictable, and easy for the clad and the compiler to optimize.

Rohan Timmaraju, October 2025 11

Accelerating LLM Training in C++ with Clad | Optimized Implementation

Clad Integration: A Perfect Match for C-Style Kernels
The procedural design simplified Clad integration significantly by mapping each forward
kernel to its hand-optimized backward counterpart using clad::custom_derivatives. Clad
can then generate the backpropagation code that orchestrates these kernels.

1. Forward Kernel

:/ Stateless function
void layernorm_forward(
 float* out, float* inp,
 float* weight, float* bias,
 int N, int C
);

3. Clad Pullbacks

void layernorm_forward_pullback(
 float* out, float* inp,
 float* weight, float* bias,
 int N, int C,
 float* dout, float* dinp,
 float* dweight, float* dbias
);

Rohan Timmaraju, October 2025 12

Results

Accelerating LLM Training in C++ with Clad | Results

Performance
• System: Apple M3 Max CPU
• Task: Full GPT-2 training iteration (forward + backward pass)
• Result: Our C++ implementation is consistently faster than PyTorch on CPU.

Config
(Batch, SeqLen)

Clad (optimized) (ms) PyTorch (ms) Speedup

B=1, T=16 111 196 1.77 ×
B=1, T=32 114 211 1.85 ×
B=2, T=16 113 216 1.91 ×
B=1, T=64 115 241 2.1 ×

Rohan Timmaraju, October 2025 14

Accelerating LLM Training in C++ with Clad | Results

Performance Benchmarks

0 100 200 300 400 500 600
Time (ms)

B=1, T=16

B=1, T=32

B=2, T=16

B=1, T=64

Ba
tc

h
Si

ze
, S

eq
ue

nc
e

Le
ng

th clad (optimized)
PyTorch (CPU)
cladtorch
MLX (CPU)

Rohan Timmaraju, October 2025 15

Accelerating LLM Training in C++ with Clad | Results

Performance Analysis
• 1. No Python Overhead:
‣ The entire training loop is a compiled, monolithic binary. No calls between Python

and C++, no GIL, no dynamic dispatch.

• 2. Cache-Friendly Memory Layout:
‣ The single pre-allocated buffer leads to excellent data locality, and no freeing or

reallocations of temporaries due to RAII (like in cladtorch), ensuring efficient memory
use.

• 3. Direct BLAS & Kernel Fusion:
‣ We call optimized libraries like Apple’s Accelerate framework directly for cblas_sgemm

without framework abstractions.
‣ This design allows for manual kernel fusion.

Rohan Timmaraju, October 2025 16

Summary & Future Work

Accelerating LLM Training in C++ with Clad | Summary & Future Work

Project Summary & Key Achievements
• Two functional C++ implementations for LLM training: a flexible prototype and one for

high-performance.
• Successfully demonstrated Clad’s capability for end-to-end differentiation of a real-

world, complex model like GPT-2.
• Achieved a significant performance milestone: The optimized C++ implementation

outperforms PyTorch on CPU.
• Created a strong foundation for future research into C++-based ML and GPU

acceleration.

Rohan Timmaraju, October 2025 18

Accelerating LLM Training in C++ with Clad | Summary & Future Work

Future Work/Promising Directions
1. GPU Acceleration (CUDA):

• The C-style, optimized kernel design is an ideal foundation for porting to GPUs.
• This would allow us to investigate the performance characteristics of this on

hardware best suited for training.

2. Clad-Driven Kernel Fusion:
• Leverage Clad’s static analysis capabilities to automatically fuse sequential

operations.
• Example: Fusing softmax and cross_entropy_loss into a single, more efficient kernel.
• Benefit: Reduces memory bandwidth bottlenecks and kernel launch overhead.

Rohan Timmaraju, October 2025 19

Thank You

	The Challenge of LLM Training
	Our Approach: clad for Backpropagation
	Two Paths to Training
	Cladtorch: C++ Tensor Operations
	Cladtorch: End-to-End Differentiation
	Cladtorch: Backpropagation
	Anatomy
	Clad Integration: A Perfect Match for C-Style Kernels
	Performance
	Performance Benchmarks
	Performance Analysis
	Project Summary & Key Achievements
	Future Work/Promising Directions

