Differentiating
Object-Oriented paradigm
using Clad

Petro Zarytskyi

N PRINCETON
& UNIVERSITY

Clad

Preserving Object Oriented Programming in
Automatic Differentiation

Typical AD approaches do not preserve the object-oriented
structure and abstractions in the derivative code for C++

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

Preserving Object Oriented Programming in
Automatic Differentiation

Our goal - generate derivative code that respects the original abstraction boundaries and looks like what a
human developer would write

Why it matters - preserving OOP structure maintains modularity, keeps derivative code readable and
debuggable, and allows leveraging existing class designs and interfaces in gradient computations

It is challenging because ...

o The tool needs to reason about function behavior and program semantics at a high level
o The tool must work within or alongside the compiler to access and analyze the syntactic structure
o The approach must be easily scalable and not require case-by-case manual implementation across different OOP designs

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

About Clad

C++ source transformation - Implemented as a compile time Clang plugin traversing the Abstract
Syntax Tree (AST) of the primal function and generating the derivative code

Preserves original C++ syntax - while many AD tools flatten out the compute graph to make the

primal code simpler, we fully preserve the original code structure
o Enables support for control flow expressions
o Readable (hence easily debuggable) generated code for gradient computation
o Compile time evaluation - templates, consteval

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

Note: We are only going to discuss reverse mode AD

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

Motivational Example

Example: Discrete Fourier Transform (DFT).

Hand-written derivative
Primal function Gradient

bid dft grad (cons

spectrum,

d signal,

<double>>* d spectrum)

rum) [k];

< N; ++n) |

sum +=

* M PI * k *

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

Compute Graph of Derivative Code

Compute Graph of Derivative Code

G Nested
function ° Forward
a sweep
Primal Derived e
function — function
Backward
sweep

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

Compute Graph of Derivative Code

‘ Reverse_forw
Nested
function ‘ G
Primal Derived G °
: : Forward
function function ol
© O
@ Backward
° sweep
10

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

Compute Graph of Derivative Code

Primal
function

Nested
function

—_—

Derived
function

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Reverse_forw

Pullback

11

https://github.com/vgvassilev/clad

Compute Graph of Derivative Code

Derived
function

Reverse_forw - forward sweep of the
function. Handles memory operations
(i.e. pointer/reference adjoints)

Handles numerical operations

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Pullback - reverse sweep of the function.

12

https://github.com/vgvassilev/clad

Differentiating the example
automatically

Example: Discrete Fourier Transform (DFT).
Automatically generated derivatives

Primal function Gradient 18 functions 244 lines

std: :vector<double>& signal,
~<std::complex<double>>& spectrum) {
N = signal.size();
0; k < N; ++k) {
std::complex<double> sum = {0.0};
for (std::size t n = 0; n < N; ++n) {
buble angle = -2.0 * M PI * k * n / N;
std::complex<double> w(std::cos (angle),
std::sin (angle)) ;
sum += signal [n] * w;
}

spectrum [k] = sum;

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

https://github.com/vgvassilev/clad

So why did we get so many derivatives?

All of these are hidden
function calls that
require reverse_forw
and pullback

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

15

https://github.com/vgvassilev/clad

OOP-motivated optimizations.
Expressing Semantics

How can we avoid generating these derivatives?
Consider a simple example

cript reverse for

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

17

https://github.com/vgvassilev/clad

Step 1: Remove pullbacks of access-only functions
Such operations can be expressed with reverse_forw

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

18

https://github.com/vgvassilev/clad

Step 1: Remove pullbacks of access-only functions
Such operations can be expressed with reverse_forw

This is done
automatically now!

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

19

https://github.com/vgvassilev/clad

Step 2: Elide the reverse_forw

cript reverse for

Notice: this is just {fveclil, _d_veclil}

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

20

https://github.com/vgvassilev/clad

Step 2: Elide the reverse_forw

Notice: this is just {fveclil, _d_veclil}

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

21

https://github.com/vgvassilev/clad

Step 2: Elide the reverse_forw

For now can only be
requested manually with the
elidable_reverse_forw attribute

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

22

https://github.com/vgvassilev/clad

How do these changes impact the previous
example?

Hand-written Gradient: 1 function 15 lines
Automatic gradient (no optimization): 18 functions 244 lines

Automatic gradient (optimized): 12 functions 202 lines

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

23

https://github.com/vgvassilev/clad

Summary

Promising results with semantic awareness - our approach shows preserving class structures and
semantics can lead to significant derivative code simplification

A path forward for automated optimization - while some optimization requires manual intervention,
we've demonstrated the feasibility and effectiveness of this approach, paving the way for the
upcoming automation

Future work:
o Broadening container coverage - extending our analysis to encompass standard accessor functions (operator[], front(),
back(), operator*) across common containers (std::vector, std::list) and smart pointers (std::unique_ptr, std::shared_ptr)
o Expanding functional scope - moving beyond pure functions to handle side-effect operations (like std::vector::push_back)
and constructors

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

24

https://github.com/vgvassilev/clad

Thank you!

25

