
Differentiating
Object-Oriented paradigm
using Clad
Petro Zarytskyi

1

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Preserving Object Oriented Programming in
Automatic Differentiation

Typical AD approaches do not preserve the object-oriented
structure and abstractions in the derivative code for C++

2

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Preserving Object Oriented Programming in
Automatic Differentiation

● Our goal - generate derivative code that respects the original abstraction boundaries and looks like what a
human developer would write

● Why it matters - preserving OOP structure maintains modularity, keeps derivative code readable and
debuggable, and allows leveraging existing class designs and interfaces in gradient computations

● It is challenging because …
○ The tool needs to reason about function behavior and program semantics at a high level
○ The tool must work within or alongside the compiler to access and analyze the syntactic structure
○ The approach must be easily scalable and not require case-by-case manual implementation across different OOP designs

3

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

About Clad
● C++ source transformation - Implemented as a compile time Clang plugin traversing the Abstract

Syntax Tree (AST) of the primal function and generating the derivative code

● Preserves original C++ syntax - while many AD tools flatten out the compute graph to make the

primal code simpler, we fully preserve the original code structure
○ Enables support for control flow expressions

○ Readable (hence easily debuggable) generated code for gradient computation

○ Compile time evaluation - templates, consteval

4

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Note: We are only going to discuss reverse mode AD

5

https://github.com/vgvassilev/clad

Motivational Example

6

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Example: Discrete Fourier Transform (DFT).
 Hand-written derivative

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

Primal function

void dft_grad(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum,

 std::vector<double>* d_signal,

 std::vector<std::complex<double>>* d_spectrum)

{

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> d_sum = (*d_spectrum)[k];

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 (*d_signal)[n] += std::real(d_sum * std::conj(w));

 }

 }

}

Gradient

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

void dft_grad(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum,

 std::vector<double>* d_signal,

 std::vector<std::complex<double>>* d_spectrum)

{

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> d_sum = (*d_spectrum)[k];

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 (*d_signal)[n] += std::real(d_sum * std::conj(w));

 }

 }

}

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

void dft_grad(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum,

 std::vector<double>* d_signal,

 std::vector<std::complex<double>>* d_spectrum)

{

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> d_sum = (*d_spectrum)[k];

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 (*d_signal)[n] += std::real(d_sum * std::conj(w));

 }

 }

}

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

void dft_grad(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum,

 std::vector<double>* d_signal,

 std::vector<std::complex<double>>* d_spectrum)

{

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> d_sum = (*d_spectrum)[k];

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 (*d_signal)[n] += std::real(d_sum * std::conj(w));

 }

 }

}

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

void dft_grad(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum,

 std::vector<double>* d_signal,

 std::vector<std::complex<double>>* d_spectrum)

{

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> d_sum = (*d_spectrum)[k];

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 (*d_signal)[n] += std::real(d_sum * std::conj(w));

 }

 }

}

7

https://github.com/vgvassilev/clad

Compute Graph of Derivative Code

8

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

S

Nested
function

E

C

Compute Graph of Derivative Code

F1

F2

Primal
function

Derived
function

S

E

C

dE

dS

dC

Forward
sweep

Backward
sweep

9

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

S

Nested
function

E

C

Compute Graph of Derivative Code

F1

F2

Primal
function

Derived
function

S

E

C

dE

dS

dC

F1

F2

10

Reverse_forw

F1

F2

dF2

dF1

Forward
sweep

Backward
sweep

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

S

Nested
function

Derived
function

E

C

Compute Graph of Derivative Code

F1

F2

Primal
function

S

E

C

dE

dS

dC

Reverse_forw

F1

F2

Pullback

11

F1

F2

dF2

dF1

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Derived
function

Compute Graph of Derivative Code

S

E

C

dE

dS

dC

Reverse_forw - forward sweep of the
function. Handles memory operations
(i.e. pointer/reference adjoints)

F1

F2

Pullback - reverse sweep of the function.
Handles numerical operations

F1

F2

dF2

dF1

12

https://github.com/vgvassilev/clad

Differentiating the example
automatically

13

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Example: Discrete Fourier Transform (DFT).
 Automatically generated derivatives

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

14

Primal function Gradient
static constexpr void constructor_pullback(double __re, double __im, std::complex<double> *_d_this, double *_d___re, double *_d___im) {...}

void size_pullback(size_type _d_y, std::vector<double> *_d_this) const noexcept {...}

constexpr void real_pullback(double _d_y, std::complex<double> *_d_this) const {...}

constexpr void imag_pullback(double _d_y, std::complex<double> *_d_this) const {...}

void operator_subscript_pullback(size_type __n, value_type _d_y, std::vector<std::complex<double> > *_d_this, size_type *_d___n) noexcept

{...}

void operator_subscript_pullback(size_type __n, value_type _d_y, std::vector<std::complex<double> > *_d_this, size_type *_d___n) noexcept

{...}

clad::ValueAndAdjoint<reference, reference> operator_subscript_reverse_forw(size_type __n, std::vector<std::complex<double> > *_d_this,

size_type _d___n) noexcept {...}

clad::ValueAndAdjoint<reference, reference> operator_subscript_reverse_forw(size_type __n, std::vector<std::complex<double> > *_d_this,

size_type _d___n) noexcept {...}

clad::ValueAndAdjoint<complex<double> &, complex<double> &> operator_plus_equal_reverse_forw(const complex<double> &__c,

std::complex<double> *_d_this, const complex<double> &_d___c, clad::restore_tracker &_tracker0) {...}

void operator_plus_equal_pullback(const complex<double> &__c, std::complex<double> *_d_this, complex<double> *_d___c) {...}

static inline constexpr void constructor_pullback(const complex<double> &arg0, std::complex<double> *_d_this, complex<double> *_d_arg0)

noexcept {...}

clad::ValueAndAdjoint<complex<double> &, complex<double> &> operator_star_equal_reverse_forw(double __re, std::complex<double> *_d_this,

double _d___re, clad::restore_tracker &_tracker0) {...}

operator_star_equal_pullback(double __re, std::complex<double> *_d_this, double *_d___re) {...}

static inline constexpr void constructor_pullback(complex<double> &&arg0, std::complex<double> *_d_this, complex<double> *_d_arg0) noexcept

{...}

inline void operator_star_pullback(const double &__x, const complex<double> &__y, complex<double> _d_y, double *_d___x, complex<double>

*_d___y) {...}

inline constexpr clad::ValueAndAdjoint<complex<double> &, complex<double> &> operator_equal_reverse_forw(const complex<double> &arg0,

std::complex<double> *_d_this, const complex<double> &_d_arg0, clad::restore_tracker &_tracker0) noexcept {...}

inline constexpr void operator_equal_pullback(const complex<double> &arg0, std::complex<double> *_d_this, complex<double> *_d_arg0)

noexcept {...}

void dft_grad(const std::vector<double> &signal, std::vector<std::complex<double> > &spectrum, std::vector<double> *_d_signal,

std::vector<std::complex<double> > *_d_spectrum) {...}

18 functions 244 lines

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

So why did we get so many derivatives?

void dft(const std::vector<double>& signal,

 std::vector<std::complex<double>>& spectrum) {

 const std::size_t N = signal.size();

 for (std::size_t k = 0; k < N; ++k) {

 std::complex<double> sum = {0.0};

 for (std::size_t n = 0; n < N; ++n) {

 double angle = -2.0 * M_PI * k * n / N;

 std::complex<double> w(std::cos(angle),

 std::sin(angle));

 sum += signal[n] * w;

 }

 spectrum[k] = sum;

 }

}

All of these are hidden
function calls that
require reverse_forw
and pullback

15

https://github.com/vgvassilev/clad

OOP-motivated optimizations.
Expressing Semantics

16

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

How can we avoid generating these derivatives?
 Consider a simple example

std::vector<double> vec;

vec[i] = x;

std::vector<double> vec;

std::vector<double> _d_vec;

// forward pass

auto _t0 = operator_subscript_reverse_forw(vec, i, _d_vec, _d_i);

_t0.value = x;

// reverse pass

operator_subscript_pullback(vec, i, _d_sum, &_d_vec, &_d_i);

double& std::vector<double>::operator[](size_t i)

{...}

void operator_subscript_pullback(...) {...}

clad::ValueAndAdjoint<double&, double&>

operator_subscript_reverse_forw(...) {...}

17

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Step 1: Remove pullbacks of access-only functions
 Such operations can be expressed with reverse_forw

std::vector<double> vec;

vec[i] = x;

std::vector<double> vec;

std::vector<double> _d_vec;

// forward pass

auto _t0 = operator_subscript_reverse_forw(vec, i, _d_vec, _d_i);

_t0.value = x;

// reverse pass

operator_subscript_pullback(vec, i, _d_sum, &_d_vec, &_d_i); _d_x += _t0.adjoint;

double& std::vector<double>::operator[](size_t i)

{...}

clad::ValueAndAdjoint<double&, double&>

operator_subscript_reverse_forw(...) {...}

void operator_subscript_pullback(...) {...}

18

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Step 1: Remove pullbacks of access-only functions
 Such operations can be expressed with reverse_forw

std::vector<double> vec;

vec[i] = x;

std::vector<double> vec;

std::vector<double> _d_vec;

// forward pass

auto _t0 = operator_subscript_reverse_forw(vec, i, _d_vec, _d_i);

_t0.value = x;

// reverse pass

_d_x += _t0.adjoint;

double& std::vector<double>::operator[](size_t i)

{...}

This is done
automatically now!

clad::ValueAndAdjoint<double&, double&>

operator_subscript_reverse_forw(...) {...}

19

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Step 2: Elide the reverse_forw

std::vector<double> vec;

vec[i] = x;

std::vector<double> vec;

std::vector<double> _d_vec;

// forward pass

auto _t0 = operator_subscript_reverse_forw(vec, i, _d_vec, _d_i);

_t0.value = x;

// reverse pass

_d_x += _t0.adjoint;

double& std::vector<double>::operator[](size_t i)

{...}

clad::ValueAndAdjoint<double&, double&>

operator_subscript_reverse_forw(...) {...}

20

Notice: this is just {vec[i], _d_vec[i]}

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Step 2: Elide the reverse_forw

std::vector<double> vec;

vec[i] = x;

std::vector<double> vec;

std::vector<double> _d_vec;

// forward pass

auto _t0 = operator_subscript_reverse_forw(vec, i, _d_vec, _d_i);

_t0.value = x; vec[i] = x;

// reverse pass

_d_x += _t0.adjoint; d_x += _d_vec[i];

double& std::vector<double>::operator[](size_t i)

{...}

clad::ValueAndAdjoint<double&, double&>

operator_subscript_reverse_forw(...) {...}

Notice: this is just {vec[i], _d_vec[i]}

21

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Step 2: Elide the reverse_forw

std::vector<double> vec;

vec[i] = x;

std::vector<double> vec;

std::vector<double> _d_vec;

// forward pass

vec[i] = x;

// reverse pass

d_x += _d_vec[i];

For now can only be
requested manually with the
elidable_reverse_forw attribute

clad::ValueAndAdjoint<T&, T&>

operator_subscript_reverse_forw(std::vector<T>* vec, ...) elidable_reverse_forw;

22

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi 23

● Hand-written Gradient: 1 function 15 lines

● Automatic gradient (no optimization): 18 functions 244 lines

● Automatic gradient (optimized): 12 functions 202 lines

How do these changes impact the previous
example?

https://github.com/vgvassilev/clad

EuroAD 2025 - Clad, Differentiating Object-Oriented paradigm - Petro Zarytskyi

Summary
● Promising results with semantic awareness - our approach shows preserving class structures and

semantics can lead to significant derivative code simplification

● A path forward for automated optimization - while some optimization requires manual intervention,

we've demonstrated the feasibility and effectiveness of this approach, paving the way for the

upcoming automation

● Future work:
○ Broadening container coverage - extending our analysis to encompass standard accessor functions (operator[], front(),

back(), operator*) across common containers (std::vector, std::list) and smart pointers (std::unique_ptr, std::shared_ptr)

○ Expanding functional scope - moving beyond pure functions to handle side-effect operations (like std::vector::push_back)

and constructors

24

https://github.com/vgvassilev/clad

Thank you!

25

