
Error estimates of floating-point numbers and Jacobian matrix computation in Clad
Vassil Vassilev 1 Alexander Penev 2 Roman Shakhov 3

1Princeton University 2University of Plovdiv ``Paisii Hilendarski'' 3University of Voronezh

Automatic Differentiation Clad and Clang

In mathematics and computer algebra, automatic differentiation (AD) is a set of techniques to

evaluate the derivative of a function specified by a computer program. That is, AD takes the

source code of a function as input and produces the source code of the derived function. AD ex-

ploits the fact that every computer program, no matter how complicated, executes a sequence of

elementary arithmetic operations (addition, subtraction, multiplication, division, etc.), elementary

functions (exp, log, sin, cos, etc.), and control flow statements. By applying the chain rule re-

peatedly to these operations, derivatives of arbitrary order can be computed automatically, with

an accurately limited by the working precision, and using at most a small constant factor more

arithmetic operations than the original program.

Clad is a source transformationAD tool for C++ [2, 3]. It is based on LLVM compiler infrastructure

and is implemented as a plugin for C++ compiler Clang, which allows Clad to be transparently

integrated into the compilation phase, and to utilize large parts of the compiler itself. Clad relies

on Clang’s parsing and code generation functionalities and can differentiate complicated C++

constructs in both forward and reverse mode. It is available as a standalone Clang plugin that,

when attached to the compiler, produces derivatives in the compilation phase.

clad::{differentiate,gradient,hessian,jacobian}

clang Clad (libClad.so)

Derivatives.cxx

a.out

a.out

(msvc/g++)

Clad operates on the Clang AST (abstract syntax tree) by analyzing the original function and gen-

erating the AST of the derivative. Clad provides the API functions: clad::differentiate for forward

mode, clad::gradient for reverse mode, clad::jacobian and clad::hessian for mixed mode [3].

The Jacobian matrix of a vector-valued function with several dependent variables generalizes the

gradient of a scalar-valued function in several variables, which in turn generalizes the derivative

of a scalar-valued function of a single variable. That is, the Jacobian of a scalar-valued function in

several variables is (the transpose of) its gradient and, the gradient of a scalar-valued function of

a single variable is its derivative. The Jacobian matrix can also be thought of as describing the

J =
[
∂f
∂x1
· · ·
∂f
∂xn

]
=


∂ f1
∂x1
· · ·
∂ f1
∂xn

...
∂ fm
∂x1
· · ·
∂ fm
∂xn

 .
amount of "stretching", "rotating" or "transforming" that the function implies. For example, if

(x, y) = f (x, y) is used to smoothly transform an image, the Jacobian matrix J f (x, y), describes
how the image in the neighborhood of (x, y) is transformed.

AD accuracy

Numerical differentiation (ND) may give imprecise results, while AD computes the derivatives

accurately. We show an example of a function where this difference is apparent:

p(x) =
1
π

1
2Γ

x2 + (1
2Γ)

2
(1)

∂p(x)
∂Γ
= −

2
π

Γ2 − 4x2

(Γ2 + 4x2)2 (2)

The function is the PDF of Breit-Wigner distribution (Eq. 1), whose derivative with respect to Γ

(Eq. 2) has critical points at Γ = ±2x. AD provides exact result while ND suffers from the loss

of accuracy. The function can be implemented as in (Listing 1).

inline double breitwigner_pdf(double x, double gamma, double x0 = 0) {

double gammahalf = gamma/2.0;

return gammahalf/(M_PI * ((x-x0)*(x-x0) + gammahalf*gammahalf));

}

Listing 1: Example Breit-Wigner PDF implementation

When evaluating the derivative of breitwigner_pdf with respect to gamma at x=1, gamma=2,

ND the yields a result close to 0 with an absolute error of 10−13, even though the function is

smooth and well-conditioned at this point. The approximation error becomes larger when the

derivative is evaluated further from the critical point. In contrast, AD yields exact result of 0.

Jacobian Matrix. Results

The computational cost of evaluating the Jacobian matrix is also relatively high for numeric differ-

entiation. It requires 2N2 function invocations for square Jacobian of N (nd_jaco in Listing 2). AD

provides techniques to reduce the computational cost by reducing the function calls or computing

the Jacobian in a single pass.

Figure 1 represents a performance benchmark of 4 different ways to obtain a Jacobian -- one

numeric and three based on AD. The numeric computation of the partial derivatives uses the

finite differences method and requires two evaluations per direction (other numerical approaches

make more evaluations to improve numerical stability). The AD Jacobian can be computed us-

ing AD generated derivatives: in forward mode (with N2 evaluations) and reverse mode (with N
evaluations)

Figure 1: Performance comparison of Jacobian computed numerically and using Clad

and mixed mode (single evaluation). Listing 2 shows a part of the benchmark. The lhs shows the

non-linear transformations f1 and f2 which participate in the computed Jacobian. The rhs shows

the skeleton of the generated code by Clad.

1 #include <clad/Differentiator/Differentiator.h>

2 double f1(double x, double y) {

3 return 2 * x * y;

4 }

5 double f2(double x, double y) {

6 return x * x + y * y;

7 }

8 void fn(double x, double y, double res[2]) {

9 res[0] = f1(x, y); res[1] = f2(x, y);

10 }

11

12 void nd_jaco(double x, double y,

13 double j[4]) {

14 const double E = 1e-8;

15 j[0] += (f1(x + E, y) - f1(x - E, y)) / (2 * E);

16 j[1] += (f1(x, y + E) - f1(x, y - E)) / (2 * E);

17 j[2] += (f2(x + E, y) - f2(x - E, y)) / (2 * E);

18 j[3] += (f2(x, y + E) - f2(x, y - E)) / (2 * E);

19 }

20

21 int main() {

22 // double x=, y=

23 auto clad_jaco = clad::jacobian(fn);

24 double res[2]; double jaco[4];

25 clad_jaco.execute(x, y, res, jaco);

26 nd_jaco(x, y, jaco);

27 }

1 /*Generated Code. Simplified for expository reasons*/

2 double f1_darg0(double x, double y) { /* ... */ }

3 double f1_darg1(double x, double y) { /* ... */ }

4 double f2_darg0(double x, double y) { /* ... */ }

5 double f2_darg1(double x, double y) { /* ... */ }

6

7 void f1_grad(double x, double y, double _res[2]) { /* ... */ }

8 void f2_grad(double x, double y, double _res[2]) { /* ... */ }

9

10 void fn_jac(double x, double y, double res[2], double j[4]) {

11 double _t0 = x; double _t1 = y;

12 double _t2 = x; double _t3 = y;

13 res[0] = f1(x, y); res[1] = f2(x, y);

14 double _jac1[2] = {};

15 f2_grad(_t2, _t3, _jac1);

16 double _r2 = 1 * _jac1[0UL];

17 j[2UL] += _r2;

18 double _r3 = 1 * _jac1[1UL];

19 j[3UL] += _r3;

20

21 double _jac0[2] = {};

22 f1_grad(_t0, _t1, _jac0);

23 double _r0 = 1 * _jac0[0UL];

24 j[0UL] += _r0;

25 double _r1 = 1 * _jac0[1UL];

26 j[1UL] += _r1;

27 }

Listing 2: Illustrative code examples of Jacobian computed using numerical and automatic differentiation

The usual ND implementation is separated from the target functions which prevents excessive

optimizations. ND shows very good results in -O3 mode due to inlining which is generally not

the case for production codes because often nd_jaco does not see the definitions of the target

functions. Clad can put the derivative code close to its use and allows the optimizers to heavily

optimize it. The expected algorithmic complexity of ND is O(2∗N2), ForwardAD -- O(N2), Reverse
AD -- O(N) and Mixed AD -- O(1). This is confirmed by the performance results also in Figure 1.

Error Estimation

Estimating floating point computation errors is as important as the computation itself. Accurate

error estimation requires processing the code, arithmetic operations, and assignments for each

input variable and dependent intermediate ones. It is virtually impossible to make an accurate

error estimation by hand. In cases where it is possible, it can make the code less readable and

maintainable.

The AD technology decomposes the computation graph into atomic operations, which can then

be used to follow differential calculus rules to produce a derivative. Adding a set of extra rules to

estimate the floating point error for automatic differentiated functions is straightforward. More-

over, generalizing this towards automatically estimating errors of any computation can offer a way

to reducing the used precision bits and a way forward towards implementing lossy compression.

Using Jacobians to estimate errors

Menon et al [1] describe a prominent error estimation model is using Taylor series estimation

(Eq. 3).

y = f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)
3!

(x − a)3 + · · · ≈ f (a) + f ′(a)(x − a) (3)

The round-off error at point a is affected by the input error (∆x) and the first derivative (Eq. 4).

Generalizing it for vector valued functions where the input variables and their intermediaries con-

tributes to the final round-off error (Eq. 5).

∆y = | f (a + ∆x) − f (a)| ≈ | f ′(a) · ∆x| (4) y = f (x1, ..., xn), ∆y ≈
n∑

i=1

∣∣∣∣∣∣∂ f
∂xi

(a1, ..., an) · ∆xi

∣∣∣∣∣∣ (5)

Finally, the error estimator of a vector valued function is the scalar product of the Jacobian and

the vector of the errors of the input variables (6).

∆y ≈

[∣∣∣∣∣∣ ∂ f
∂x1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∂ f
∂x2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ ∂ f
∂xn

∣∣∣∣∣∣
]T
·
[
|∆x1| |∆x2| · · · |∆xn|

]
= Jf

T ·
[
|∆x1| |∆x2| · · · |∆xn|

]
(6)

Clad's design allows producing Jacobians of the inspected code without modifications by hand

and makes it very suitable for implementing the model. Estimating the error of the described

in [1] algorithm for approximating π is straightforward.

1 double fn(double Sn) {

2 double e = Sn * Sn;

3 double tmp = std::sqrt(4 - e);

4 double Sn1 = std::sqrt(2 - tmp);

5 return Sn1;

6 }

7 // Error at Sn=1.5: 6.889822e-09

1 double fn_stable(double Tn) {

2 double e = Tn * Tn;

3 double tmp = std::sqrt(4 + e);

4 double Tn1 = 2 * Tn / (2 + tmp);

5 return Tn1;

6 }

7 // Error at Tn=1.5: 3.555556e-09

Listing 3: Round-off error extimation of two algorithms approximating π using Jacobian

The mechanism for error estimation shows that one of the algorithms on the lhs shows numerical

instability at point 1.5 and its round-off error is around 2 times greater than the one in it's fixed

counterpart on the rhs.

Conclusion

The AD systems provide powerful techniques to decompose the computation graphs. It provides

opportunities evaluating derivatives faster. AnAD tool implemented in the compiler, such as Clad,

provides opportunities beyond computing derivatives.

The implementation of Clad permits development of a generic error estimation framework which

is not bound to a particular error approximation model. It should allow users to select their prefer-

able estimation logic and should automatically generate functions augmented with code for the

specified error estimator.

References

[1] Harshitha Menon, Michael Lam, D Kuffour, Markus Schordan, S Llyod, Kathryn Mohror, and Jeff Hittinger. Adapt: Algorithmic differ-

entiation for floating-point precision tuning. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),

2018.

[2] V Vassilev, M Vassilev, A Penev, L Moneta, and V Ilieva. Clad -- automatic differentiation using clang and llvm. In Journal of Physics:

Conference Series, volume 608, page 012055. IOP Publishing, 2015.

[3] Vassil Vassilev. Clad -- automatic differentiation for C/C++. https://github.com/vgvassilev/clad/, 2014.

clad LLVM 2020 Virtual Developers' Meeting vvasilev@cern.ch

https://github.com/vgvassilev/clad/
https://github.com/vgvassilev/clad
http://llvm.org
mailto:vvasilev@cern.ch

	References

