
Incremental Compilation Support in Clang
Vassil Vassilev and David Lange

Princeton University

Objectives

Incremental compilation aims to
support clients that need to keep
a single compiler instance active
across multiple compile requests.
Our work focuses on:
•Enhancement – upstream
incremental compilation
extensions available in forks;

•Generalization – make building
tools using incremental
compilation easier;

•Sustainability – move incremental
use cases upstream.

Introduction

Over the last decade an interactive,
interpretative, C++ (aka REPL) plat-
form has developed as part of the high-
energy physics data analysis project –
ROOT [1, 2]. This REPL, cling [3] sup-
ports data analysis of exabytes of parti-
cle physics data coming from the Large
Hadron Collider (LHC) and other par-
ticle physics experiments.

Cling is a C++ interpreter built on
top of clang and LLVM. In a nut-
shell, it uses clang’s incremental compi-
lation facilities to process code chunk-
by-chunk by assuming an ever-growing
translation unit [3]. Code is lowered
into LLVM’s IR and run by the LLVM
jit. Cling implements language "exten-
sions" such as execution statements on
the global scope and error recovery.

Cling is also available as a standalone
tool, with a growing community, in-
cluding users in finance, biology and in
a few companies with proprietary soft-
ware. For example, there is a xeus-
cling jupyter kernel [4]. One of the
major challenges we face to foster this
community is the set of cling-related
patches to its LLVM and clang forks.
The benefit of relying more heavily on
the LLVM community standards for
code reviews, release cycles and inte-
gration has been mentioned a number
of times by our users.

Contact Information

• vvasilev@cern.ch
•david.lange@princeton.edu

Background

Cling requires ∼100 patches to clang’s incremental compilation facilities. For
example, CodeGen was modified to work with multiple llvm::Module instances,
and to finalize per each end-of-translation unit (cling has more than one). Tweaks
to the FileManager’s caching mechanism, and improvements to the SourceManager
virtual and overridden files (code reached mostly from within cling’s setup) were
necessary.

Our research shows that the clang infrastructure works amazingly well
to support something which was not its main use case. The grand total of our diffs
against clang-9 is: 62 files changed, 1294 insertions(+), 231 deletions(-).

A major weakness of cling’s infrastructure is that it does not work with the clang
Action infrastructure due to the lack of an IncrementalAction.

Clang Incremental Action

An incremental action should enable the incremental compilation mode in clang
(eg., in the preprocessor) and does not terminate at end of the main source file.

High Level Tool Design

Incremental Action allows constant compilation of partial inputs and ensures
that the compiler remains active. It includes an API to access attributes of recently
compiled chunks of code that can be post-processed. The REPL orchestrates
existing LLVM and Clang infrastructure with a similar data flow:

The tool enabling incremental compilation (eg, Clang-Repl or cling) controls
the input infrastructure by interactive prompt or by an interface allowing the
incremental processing of input (1). Then it sends the input to the underlying
incremental facilities in clang, for simplicity libIncremental, infrastructure (2).
Clang compiles the input into an AST representation (3). When required the
AST can be further transformed in order to attach specific behavior (4).

The AST representation is then lowered to LLVM IR (5). The LLVM IR is
the input format for LLVM’s just-in-time compilation infrastructure. The tool will
instruct the JIT to run specified functions (6), translating them into machine
code targeting the underlying device architecture (eg. Intel x86 or NVPTX). This
embeddable design (7 , 8) offers a compiler as a service (CaaS) capability.

A CaaS can support various language interoperability services. For example
libInterOp can aid a Python program unable to resolve an entity via last resort
lookup request to the proposed layer (1). It performs a name lookup through
for the requested entity (2). The REPL, run as a service, finds a suitable
candidate(s) and returns it. Then the layer wraps the candidate into a meta
object and returns to the Python interpreter as C++ entity bound to Python.

Conclusion

Over the years it has become evident
that incremental processing of C++
has its users not only in the science do-
main but also industry. The work un-
derway aims at making the incremental
C++ facilities in clang more sustain-
able and easier to build tools.

The advancement of the interpreta-
tive technology for C++ in cling will
be a basis for our contributions to the
LLVM community. The development
of clients based on clang incremental
C++ and improved language interop-
erability will make C++ easier to use
and friendlier to integrate in the trend-
ing Notebook-style programming.

Additional Information

We invite anyone interested in join-
ing our incremental C++ activities
to join our google group: compiler-
research-announce.

References

[1] The official repository for ROOT: analyz-
ing, storing and visualizing big data, sci-
entifically. https://github.com/root-
project/root.

[2] ROOT: analyzing petabytes of data, scien-
tifically. https://root.cern/.

[3] V Vasilev, Ph Canal, A Naumann, and
P Russo. Cling–the new interactive in-
terpreter for ROOT 6. In Journal of
Physics: Conference Series, volume 396,
page 052071, 2012.

[4] Xeus is now a Jupyter subproject. https:
//blog.jupyter.org/xeus-is-now-a-
jupyter-subproject-c4ec5a1bf30b.

Acknowledgements

This project is supported by National Sci-
ence Foundation under Cooperative Agreement
OAC-1931408. Any opinions, findings, conclu-
sions or recommendations expressed in this ma-
terial are those of the authors and do not neces-
sarily reflect the views of the National Science
Foundation.

mailto:vvasilev@cern.ch
mailto:david.lange@princeton.edu
https://groups.google.com/g/compiler-research-announce
https://groups.google.com/g/compiler-research-announce
https://github.com/root-project/root
https://github.com/root-project/root
https://root.cern/
https://blog.jupyter.org/xeus-is-now-a-jupyter-subproject-c4ec5a1bf30b
https://blog.jupyter.org/xeus-is-now-a-jupyter-subproject-c4ec5a1bf30b
https://blog.jupyter.org/xeus-is-now-a-jupyter-subproject-c4ec5a1bf30b

	References

