A brief history of Cxx]l

ssJulia Keno Fischer

computlng keno@juliacomputing.com www.juliacomputing.com

What is it?

Interop package to combine C++/Julia in the same program
One of two ways to combine Julia & C++

One of the oldest Julia packages (> 8 years old originally
targeted Julia 0.1)

A C++ REPL environment

A great proof of concept, that never got fully realized
Disclaimer: Though | wrote most of the code, | haven’t
been maintaining it for > 3 years and haven’t added new
feature for > 6 years.

Features - Basic Usage

o _ _ cxx string macro provides
#include <iostream> C++ global scope

function cxx_hello_world()

-'LCXXII mnin
std::cout << "Hello World" << std::endl;

end icxx string macro provides
C++ local scope

Features - Type System Mapping

cxxt string macro provides Julia type parameter may be
C++ type parsing scope interpolated into C++ type

function last(x::cxxt"std::vector<$T>") where {T}
texx"*&$x . back() ;"

end *

Values may be interpolated back
into C++ scope

N.B.: Standard Julia specialization rules
apply, i.e. specialized code will be
generated for each std::vector instance

Features - Julia Type Mapping

) @ C++ std::string template
instantiated on
complicated Julia type

using Colors
function cxx_colors()
= colorant"red"
vecT = cxxt"std::vector<$(typeof(c))>"
. _ a = @xx $vecT(); <\ @cxx macro
U Ccxx $a.push_back(c) e
integration with @cxx $a.push_back(colorant"green") S eV

Julia stdlib collect(a)

Features - Back and Forth

function cxx_loops()

-'LCXXHI n
int =0; 1L < 10; 1++) {
(

(L
$: prlntln("Hello from julia $1))

Julia Code may be

reverse-interpolated into C++ Nested interpolation works fine
this statement will run 10x)

Features - Interactive C++ REPL

Documentation: https://docs.julialang.org
Type "?" for help, "1?" for Pkg help.

Version 1.1.0 (2019-01-21)
Official https://julialang.org/ release

julia> using Cxx
[C++ > // Press '<' to activate C++ mode

C++ > #include <iostream>
true

C++ > std::cout << "Welcome to Cxx.jl" << std::endl;
Welcome to Cxx.jl

[C++ > std::string cxx = "C++";

julia> println("Combine Julia and ", String(icxx"cxx;"))
Combine Julia and C++

julia>

“Parse Time”

C++
Source

| Julia
AST

Macro
Expand

Expanded
AST

How does it work? - Compiler

Type
Inference

Clang |
AST

| Julia
IR

“Run Time”

Clang
Codegen

66'\(\%
e
we®

Julia

Codegen
Link

LLVM
IR

| LLVM
IR

Execution

Engine

How does it work? - Runtime

) @ Embedding of C++ Types into

s . Julia Type system (at Sema
julia> using Cxx level)

julia> cxx"struct demo { int x; int y; };"

true CV Qualifiers
Value lives on julia> cxxt"demo"

Julia Heap CppValue{CxxQualType{CppBaseType{:demo},(false, false, false)},N} where N

julia> a = icxx"demo{l, 2};"
(struct demo) { Default introspection code (N.B.
Et;i g; ; . Julia values carry type information
unless erased by optimization)

julia> typeof(a)
Special CppValue{CxxQualType{CppBaseType{:demo},(false, false, false)},8}

representation . . .
f : Iref julia> typeof(icxx"&$a;")
or pointers/refs CppPtr{CxxQualType{CppBaseType{:demo},(false, false, false)},(false, false, false)}

How does it work? - Runtime

julia> cxx"""
struct nontrivial { ~nontrivial() { $:(println("I got deleted")); };

true

julia> a = icxx"nontrivial{};" Nesting works also

(}struct nontrivial) { at global scope

e . Last reference
julia> a = nothing; <= dropped here

julia>

julia> GC.gc() e Julia GC deletes
I got deleted object => C++
destructor called

Challenges - Deployment

Users likely got Julia as a binary package
- Probably have no or an incompatible C++ stdlib/header
environment

Shipping Clang is a significant binary dependency

Need story for shipping headers as well as binaries

In recent versions, Julia community has taken control of
binary dependencies - see

github.com/JuliaPackaging/Yggdrasil
- Likely easy to solve deployment challenges now, but additional
work is required to plumb through all the required information

Challenges - Clang

- Clang not really designed for incremental compilation

Requires reaching into private internals to make it work
APls generally unstable, but private APIs doubly so =>
significant maintenance burden with each version bump

Clang Occasionally gets into bad states
- Particularly if the user makes C++ syntax errors => hard to
unwind Clang state

Understand this is being worked on

Challenges - Julia (1)

Clang dependency is big and slow to load

- Ideally could load clang only if compilation is required, but currently no clear way to distinguish this

case
- Also an issue for Julia proper and being worked on, but no concrete timeline

LLVM IR interop works, but somewhat half-hearted (e.g. not cacheable, incompatible with distributed
computing)
Julia has no scope-based lifetimes

- Makes using C++ libraries that want RAIl hard

- May come in a future Julia version, but not yet designed
Generic introspection utilities can violate C++ invariants (e.g. by not calling copy constructors)

- No way to disallow this

Challenges - Julia (2)

- Julia Finalizers somewhat slow
- Were design for small number of objects (e.g. files)
- With Cxx, every C++ object with non-trivial destructor gets a finalizer
- Mapped C++ types are large => slow
- Deeply nested C++ templates get mapped to deeply nested Julia type
parameters
- The Julia type system does not like this very much
- Julia LLVM pipeline not customizable
- C++ and Julia need different passes => Cxx.jl can be slower than clang
proper
- Actively being worked on

Challenges - Fundamental (1)

- Lots of state that needs to be synchronized
- LLVM IR
- Julia IR
- Clang AST

- For compilation speed Julia caches/reloads individual packages

- How do we save/reload clang state?
- PCMs may be an option, but when last investigated (~5-ish years ago were
too complicated and required manual work for each C++ package)

Challenges - Fundamental (2)

- Different C++ packages require different compilation options
- E.g. RTTI vs no-RTTI, exceptions vs no-exceptions

- Cxx.jl supports multiple parallel Clang instances, but complicated
- Need to be careful which compiler instance is used for every C++ statement
- Type space is shared between instances, but options have ABI effects

- C++ compilation is slow (ok standalone, annoying at runtime)
- Julia users expect live-reload (hard to implement)

Cxx.jl consistently popular

Cxx.jl is the coolest thing ever! ¢

Offtopic

Q klaff

I didn’t find a Place_to_Praise_Julia category, so I'll post here.

I had a situation today in which an algorithm was supplied in the form of C snippets, and having a vague
memory that one could compile C++ functions from a Julia REPL, | searched and found Cxx.jl. | tried
the Cxx example, then a little copyy/paste with the snippets and whammo!, instant answers at the
Here's a big Thank You to the authors and contributors of Cxx.jl and all of Julia.

REPL! So much fun!
9 cdsousa 13h

G giordano:

T o CxxWrap. jL which is currently widely used to interface C++ libraries and isn't limited to Julia up to

= R 2 822 3 36 e 0 g v1.3, so | don’t understand the strong need for Cxx. j1 (besides the fact it's cool)

©sep2019 @ Sep2019 replies views users likes
Cxx. jLis not only cool, but it is also strongly helpful for doing quick and dirty experiments with C++
libs. It may not be robust to wrap libraries in the long term, but it enables the REPL driven development
with C++ that we like so much in Julia!

| even used to rely a lot in Cxx. j1 for quick checks when developing in C++ &*

-

| miss being able to quickly trying using some C++-only algorithms within my Julia code ¢+ (I'm currently
trying using cppyy through PyCall)

A call to action

Cxx.jl is currently only partially maintained
- Works on Julia 1.3 / LLVM 6, but hasn’t been keeping up
- Several people interested in helping, but limited Clang
knowledge

Only 5-6 kloc, half of which on the C++ side
Deeper integration with Cling/ROOT?

- Regularly requested by HEP community

- Quick prototype 6 years ago, but never went anywhere
Reach out

- keno@juliacomputing.com ; discourse.julialang.org ;
julialang.org/slack/

mailto:keno@juliacomputing.com

