
A brief history of Cxx.jl

www.juliacomputing.com 

Keno Fischer
keno@juliacomputing.com



What is it?
- Interop package to combine C++/Julia in the same program
- One of two ways to combine Julia & C++
- One of the oldest Julia packages (> 8 years old originally 

targeted Julia 0.1)
- A C++ REPL environment
- A great proof of concept, that never got fully realized
- Disclaimer: Though I wrote most of the code, I haven’t 

been maintaining it for > 3 years and haven’t added new 
feature for > 6 years.



Features - Basic Usage

cxx string macro provides 
C++ global scope

icxx string macro provides 
C++ local scope



Features - Type System Mapping
cxxt string macro provides 
C++ type parsing scope

Julia type parameter may be 
interpolated into C++ type

Values may be interpolated back 
into C++ scope

N.B.: Standard Julia specialization rules 
apply, i.e. specialized code will be 
generated for each std::vector instance



Features - Julia Type Mapping

C++ std::string template 
instantiated on 
complicated Julia type

@cxx macro 
provides “pseudo 
C++” syntax in Julia 
for convenience

Cxx.jl provides 
C++ STL 
integration with 
Julia stdlib



Features - Back and Forth

Julia Code may be 
reverse-interpolated into C++ 
(this statement will run 10x)

Nested interpolation works fine



Features - Interactive C++ REPL



How does it work? - Compiler

Julia 
AST

Expanded 
AST

Julia 
Parse

Macro 
Expand

Type 
Inference

Julia 
IR

Julia 
Codegen
Link

LLVM 
IR

Execution 
Engine

C++ 
Source

Clang 
Parse
Sema

Clang 
AST

Clang 
Codegen

“Run Time”“Parse Time”

In
fe

rr
ed

 T
yp

es

LLVM 
IR

 Ty
pes

 IR Embedding



How does it work? - Runtime
Embedding of C++ Types into 
Julia Type system (at Sema 
level)

Value lives on 
Julia Heap

Default introspection code (N.B. 
Julia values carry type information 
unless erased by optimization)

Special 
representation 
for pointers/refs

CV Qualifiers



How does it work? - Runtime

Nesting works also 
at global scope

Last reference 
dropped here

Julia GC deletes 
object => C++ 
destructor called



Challenges - Deployment

- Users likely got Julia as a binary package
- Probably have no or an incompatible C++ stdlib/header 

environment
- Shipping Clang is a significant binary dependency
- Need story for shipping headers as well as binaries
- In recent versions, Julia community has taken control of 

binary dependencies - see 
github.com/JuliaPackaging/Yggdrasil
- Likely easy to solve deployment challenges now, but additional 

work is required to plumb through all the required information



Challenges - Clang

- Clang not really designed for incremental compilation
- Requires reaching into private internals to make it work
- APIs generally unstable, but private APIs doubly so => 

significant maintenance burden with each version bump
- Clang Occasionally gets into bad states

- Particularly if the user makes C++ syntax errors => hard to 
unwind Clang state

- Understand this is being worked on



Challenges - Julia (1)

- Clang dependency is big and slow to load
- Ideally could load clang only if compilation is required, but currently no clear way to distinguish this 

case
- Also an issue for Julia proper and being worked on, but no concrete timeline

- LLVM IR interop works, but somewhat half-hearted (e.g. not cacheable, incompatible with distributed 
computing)

- Julia has no scope-based lifetimes
- Makes using C++ libraries that want RAII hard
- May come in a future Julia version, but not yet designed

- Generic introspection utilities can violate C++ invariants (e.g. by not calling copy constructors)
- No way to disallow this



Challenges - Julia (2)

- Julia Finalizers somewhat slow
- Were design for small number of objects (e.g. files)
- With Cxx, every C++ object with non-trivial destructor gets a finalizer

- Mapped C++ types are large => slow
- Deeply nested C++ templates get mapped to deeply nested Julia type 

parameters
- The Julia type system does not like this very much

- Julia LLVM pipeline not customizable
- C++ and Julia need different passes => Cxx.jl can be slower than clang 

proper
- Actively being worked on



Challenges - Fundamental (1)

- Lots of state that needs to be synchronized
- LLVM IR
- Julia IR
- Clang AST

- For compilation speed Julia caches/reloads individual packages
- How do we save/reload clang state?

- PCMs may be an option, but when last investigated (~5-ish years ago were 
too complicated and required manual work for each C++ package)



Challenges - Fundamental (2)

- Different C++ packages require different compilation options
- E.g. RTTI vs no-RTTI, exceptions vs no-exceptions
- Cxx.jl supports multiple parallel Clang instances, but complicated

- Need to be careful which compiler instance is used for every C++ statement
- Type space is shared between instances, but options have ABI effects

- C++ compilation is slow (ok standalone, annoying at runtime)
- Julia users expect live-reload (hard to implement)



Cxx.jl consistently popular



A call to action
- Cxx.jl is currently only partially maintained

- Works on Julia 1.3 / LLVM 6, but hasn’t been keeping up
- Several people interested in helping, but limited Clang 

knowledge
- Only 5-6 kloc, half of which on the C++ side
- Deeper integration with Cling/ROOT?

- Regularly requested by HEP community
- Quick prototype 6 years ago, but never went anywhere

- Reach out
- keno@juliacomputing.com ; discourse.julialang.org ; 

julialang.org/slack/

mailto:keno@juliacomputing.com

