Accelerating simulation-based inference in RooFit at LHCb with Clad

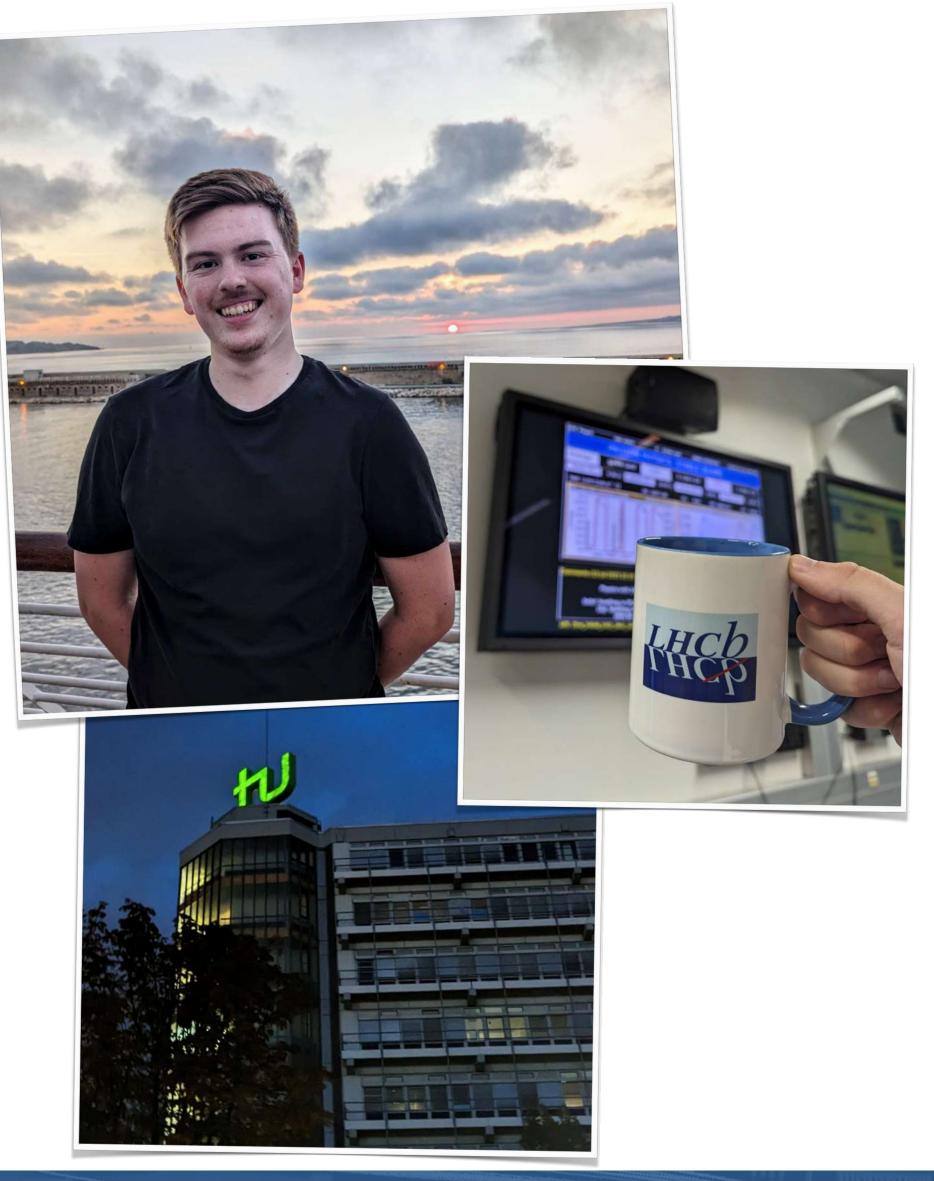
ROOT technische universität dortmund

15th May 2025 **Compiler Research Project Meeting** Johannes Albrecht, Marco Colonna, Jamie Gooding, Abhijit Mathad, Biljana Mitreska, Jonas Rembser, Danilo Piparo

MARIE CURIE ACTIONS

A little about me

- 3rd Year Doctoral Student and SMARTHEP Early Stage Researcher at TU Dortmund in Dortmund, Germany
 - Member of LHCb since 2021 (Manchester + Dortmund)
 - Research focuses include:
 - Real-time analysis for trigger systems
 - Studies of *CP*-symmetry and lepton flavour universality violation in neutral b-meson decays
 - Novel tools and techniques for analysis (convener of <u>HEP Software Foundation</u> Data Analysis Working Group
- Currently working with Jonas Rembser and the ROOT team on a demonstrator for simulation-based inference (SBI) in an LHCb physics use case
 - Aim to produce example workflow for an LHCb physics application, whilst furthering ROOT SBI support



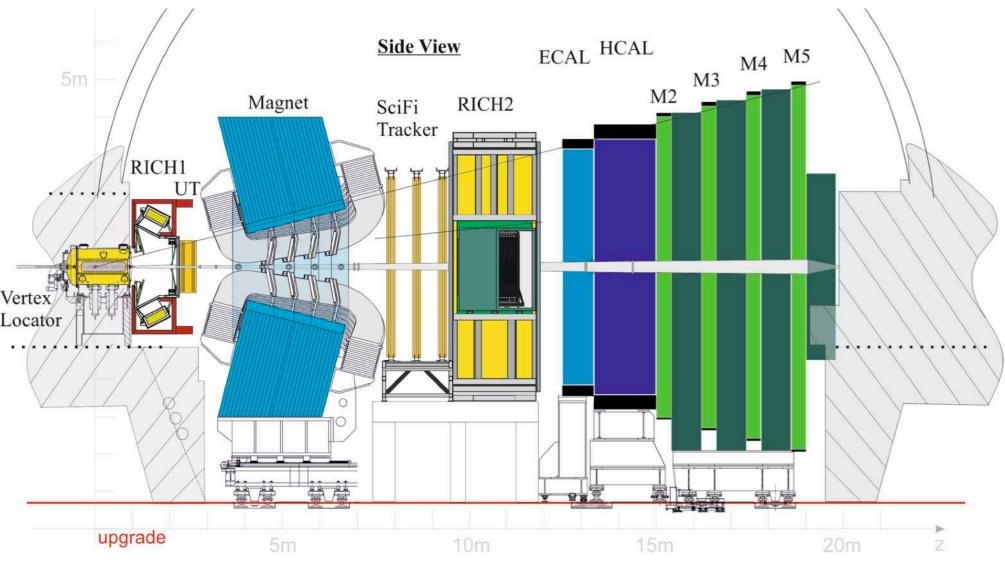
15th May 2025

*This isn't a prerequisite for understanding the rest of the talk, but adds some useful context!

First of all, some physics*

The LHCb experiment at the LHC

- The LHCb (Large Hadron Collider beauty) experiment is a dedicated flavour physics experiment at the LHC
 - Built to study the properties and decays of particles containing the heavy b and c quarks
 - By comparing against predictions from the Standard Model (SM, our best-understanding of particle physics) we look for signs of something out of place
 - We know something must be out there, as the SM doesn't describe gravity, dark matter, etc.
- As enormous a computing challenge as a physics/ engineering challenge:
 - Processing 5 TB/s of data, store around 10 GB/s
 - Statistical analyses regularly take place across datasets with millions of entries

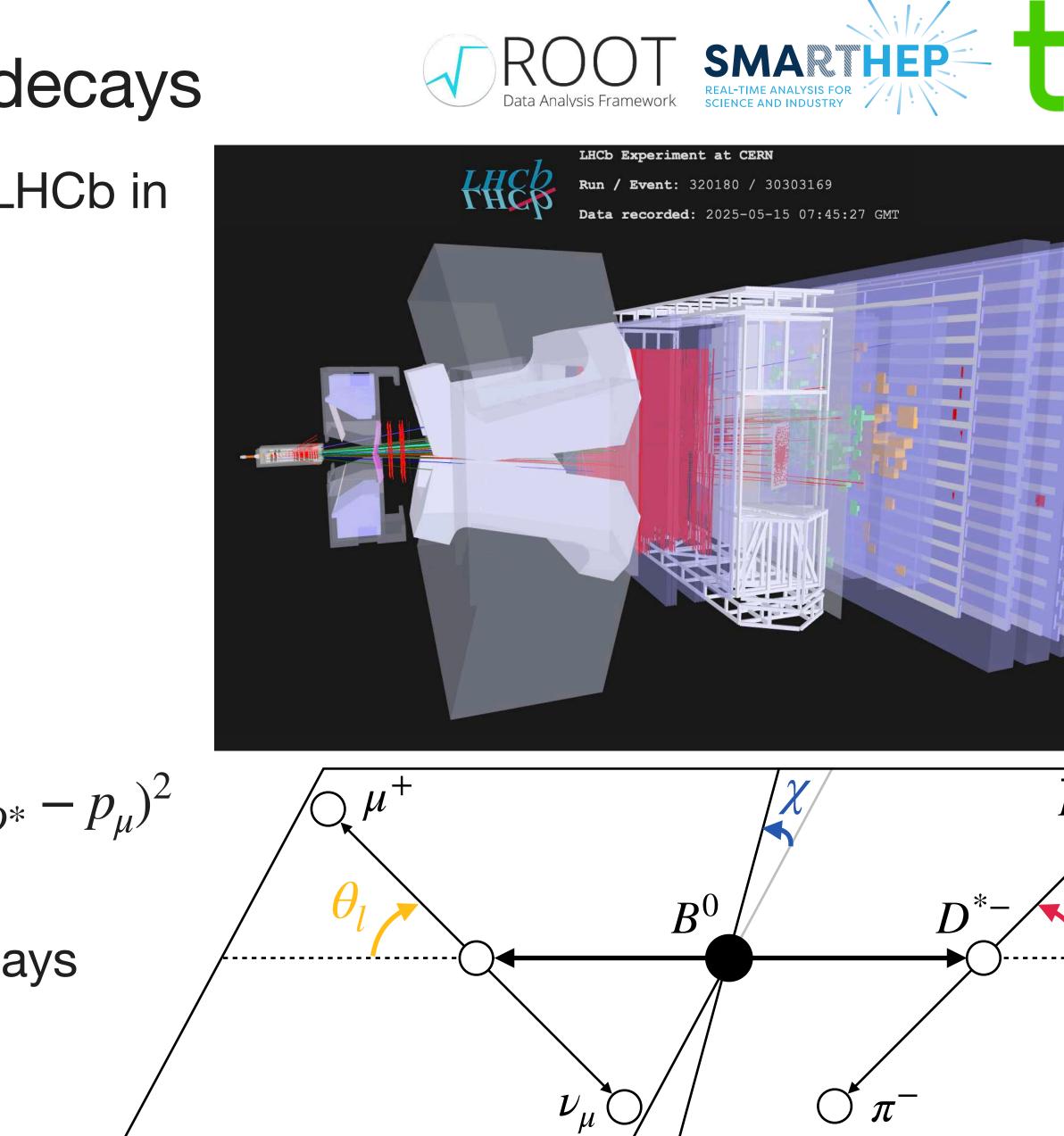


R. Aaij et al. JINST 19 (2024) P05065

Accelerating simulation-based inference in RooFit at LHCb with Clad

Semi-leptonic $B^0 \to D^{*-} \mu^+ \nu_{\mu}$ decays

- $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$ decays readily observed at LHCb in pp collisions (e.g., right from this morning):
 - $D^{*-}(\rightarrow \overline{D}^0(\rightarrow K^-\pi^+)\pi^-)$ and μ^+ fully reconstructed, but ν_{μ} missing
 - Angles of final state particles can be parameterised in three angles θ_d , θ_l , χ
 - We will also be interested in:
 - Momentum transfer, $q^2 = p_B^2 p_{D^*}^2$
 - Square missing mass, $M_{\text{miss}}^2 = (p_B p_{D^*} p_{\mu})^2$
- Can use the <u>RapidSim</u> fast MC package to generate pseudodata samples of these decays
- Angular observables may be affected by new physics (NP) contributions...



15th May 2025

Parameterising new physics

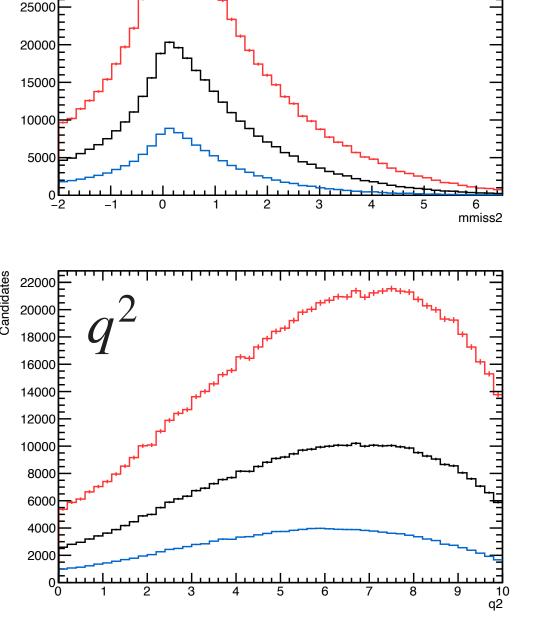
- $H_{\text{eff}} \propto \Sigma_i C_i O_i$ with $C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$
- Take an effective field theory (EFT) approach to considering decay processes • Contributions to effective Hamiltonian expressed as Wilson operators, O_i , with coefficients, C_i :
- These modify the decay rate with dependence on momentum scale and angular observables
- The NP (Wilson) coefficients (WCs), are complex and constructed to be 0 in the SM
- We consider contributions (with WCs) which are:
 - $V_{\rm RL}$: vector coupling of right-handed Fermion to left-handed ν ,
 - $S_{\rm LL}$: scalar coupling of left-handed Fermion to left-handed ν
 - $T_{\rm LL}$: tensor coupling of left-handed Fermion to left-handed ν
- The key takeaway from this: we look at our kinematic and angular observables and fit for WCs
- Note: for simplicity, we will only consider the real part of V_{RL} as our NP parameter

Injecting new physics

- Many tools exist to reweight samples for given NP scenarios, e.g., <u>HAMMER</u>, <u>EOS</u>, etc.
 - These compute relative rates based on specified WCs (and form factors, describing the strong interaction, excluded here for simplicity)
 - For our workflow, we use HAMMER
- We pass in our unweighted pseudodata sample and attach weights for our WC values of interest, e.g., *right,* showing effect of $\operatorname{Re}\{V_{RL}\}$
- In our workflow, compute weights in 4 scenarios:
 - $V_{\text{RL}} = 0$, i.e., SM case
 - $V_{\rm RL} = \theta_{\rm gen}$, for $\theta_{\rm gen}$ drawn from a uniform distribution
 - $V_{RL} = \pm 0.5$, used for normalisation (see later)

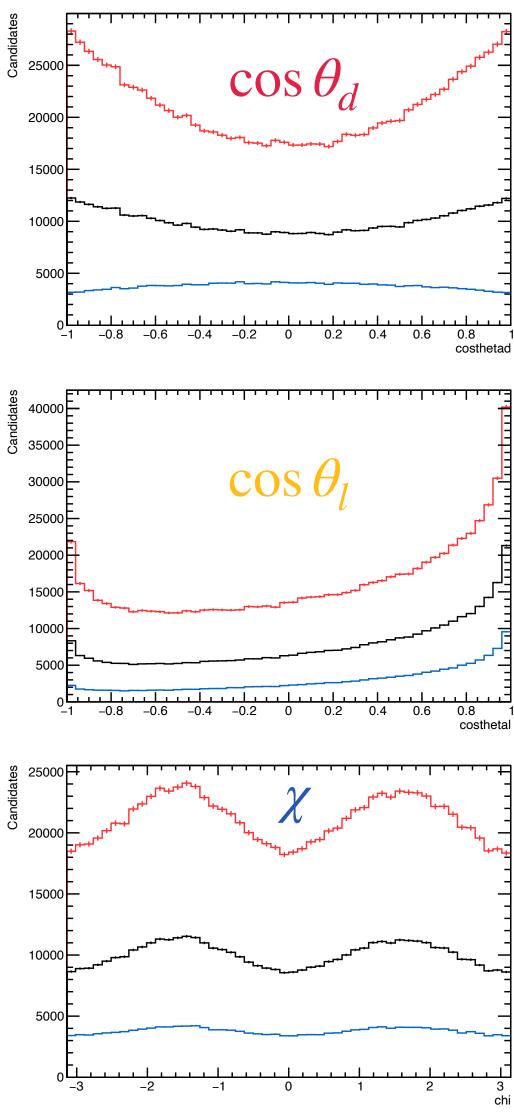
 $M^2_{\rm miss}$

35000



$$-V_{RL} = -0.5$$

 $V_{RL} = +0.5$ $V_{RL} = 0$

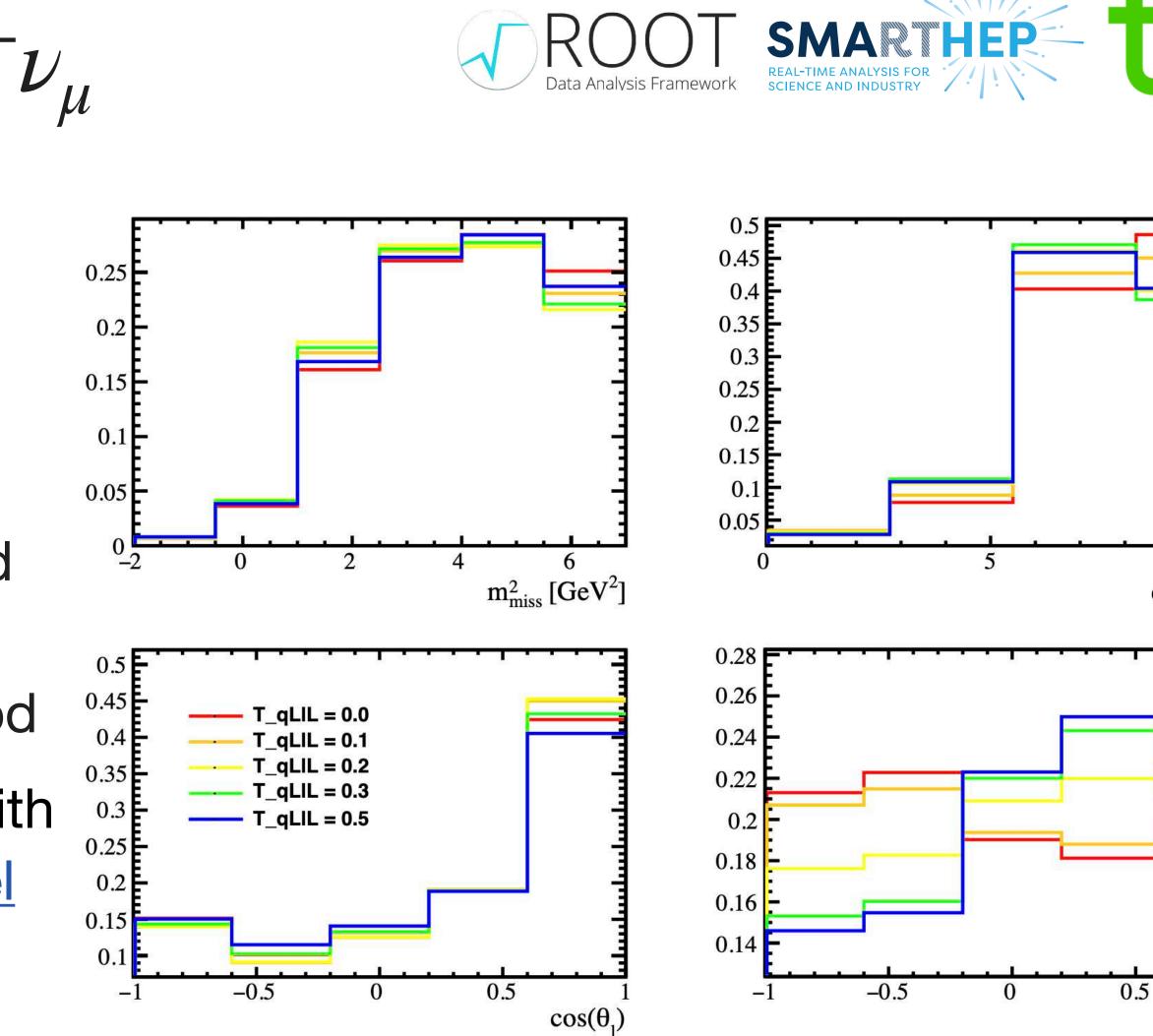


15th May 2025

Accelerating simulation-based inference in RooFit at LHCb with Clad

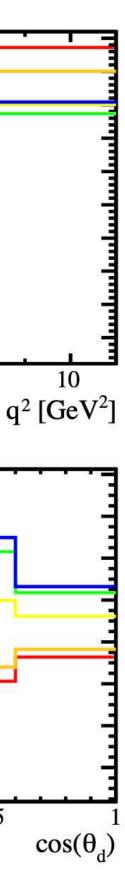
Classical fitting of $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$

- Classical approach is to bin each of the 5 dimensions and fit template histograms
 - Generate template histograms from MC simulation
 - Modify histograms with HAMMER rates
 - For each modification, compute likelihood (and gradient)
 - Repeat modification to maximise likelihood
- Often fit with <u>HistFactory/pyhf</u>, integrated with tools like HAMMER (*e.g.*, <u>RooHammerModel</u> for HistFactory/<u>redist</u> for pyhf)
- This approach is well-established and optimised, though requires large MC sample and significant computing power



B. Mitreska, talk in Challenges in SL B decays, September 2024

15th May 2025



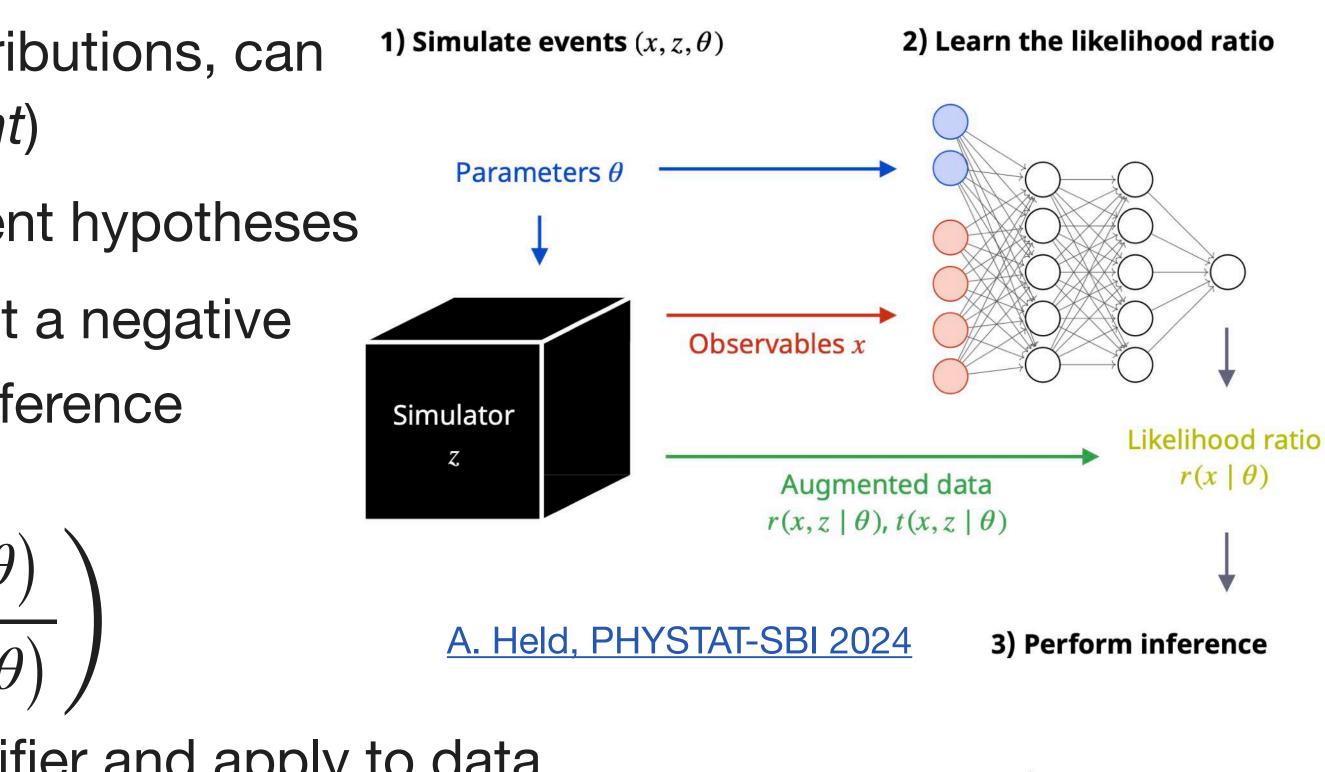
Simulation based inference

Simulation-based inference

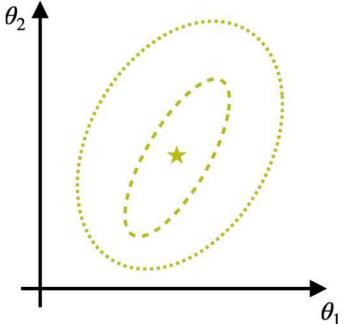
- In lieu of analytic models for probability distributions, can learn the behaviour from simulation (see right)
- Train classifier to distinguish between different hypotheses
- Can apply the likelihood ratio trick: construct a negative log-likelihood ratio of hypothesis H and a reference hypothesis from the classifier score:

$$r(\theta) = -\sum_{i} \log\left(\frac{p_H(\vec{x}_i)}{p_{\text{ref}}(\vec{x}_i)}\right)$$

- Can compute ratio above from trained classifier and apply to data
- In our case this brings a few benefits:
 - Partially reconstructed backgrounds difficult to model analytically
 - No longer necessary to bin the data \rightarrow potential gain in sensitivity
 - In principle, could reduce required size of simulation samples



Accelerating simulation-based inference in RooFit at LHCb with Clad



Constructing a classifier to learn NP

- We construct a binary classifier NN to distinguish between samples with SM weights ($V_{RL} = 0$) and NP weighted-samples ($V_{\rm RL} = \theta_{\rm gen}$ for unique $\theta_{\rm gen}$ per event) • Neural network constructed as a theory-aware NN for physical features, \vec{x} , and theory
 - parameters, $\dot{\theta}$, *i.e.*,
 - Base model, a dense NN (2 hidden layers with 100 nodes each) in \vec{x} : $s_{\text{base}}(\vec{x})$
 - Additional layer $\vec{v}(\vec{\theta})$ of dimension $(n_{\theta}, n_{\vec{x}})$ introduces NP modification of features: $\vec{x} \to \vec{x} + \vec{v} \left(\vec{\theta} \right)$

This modification gives a NN with

$$s_{\text{base}}\left(\vec{x}\right) \to s\left(\vec{x},\vec{\theta}\right) = s_{\text{base}}\left(\vec{x}+\vec{v}(\vec{\theta})\right)$$

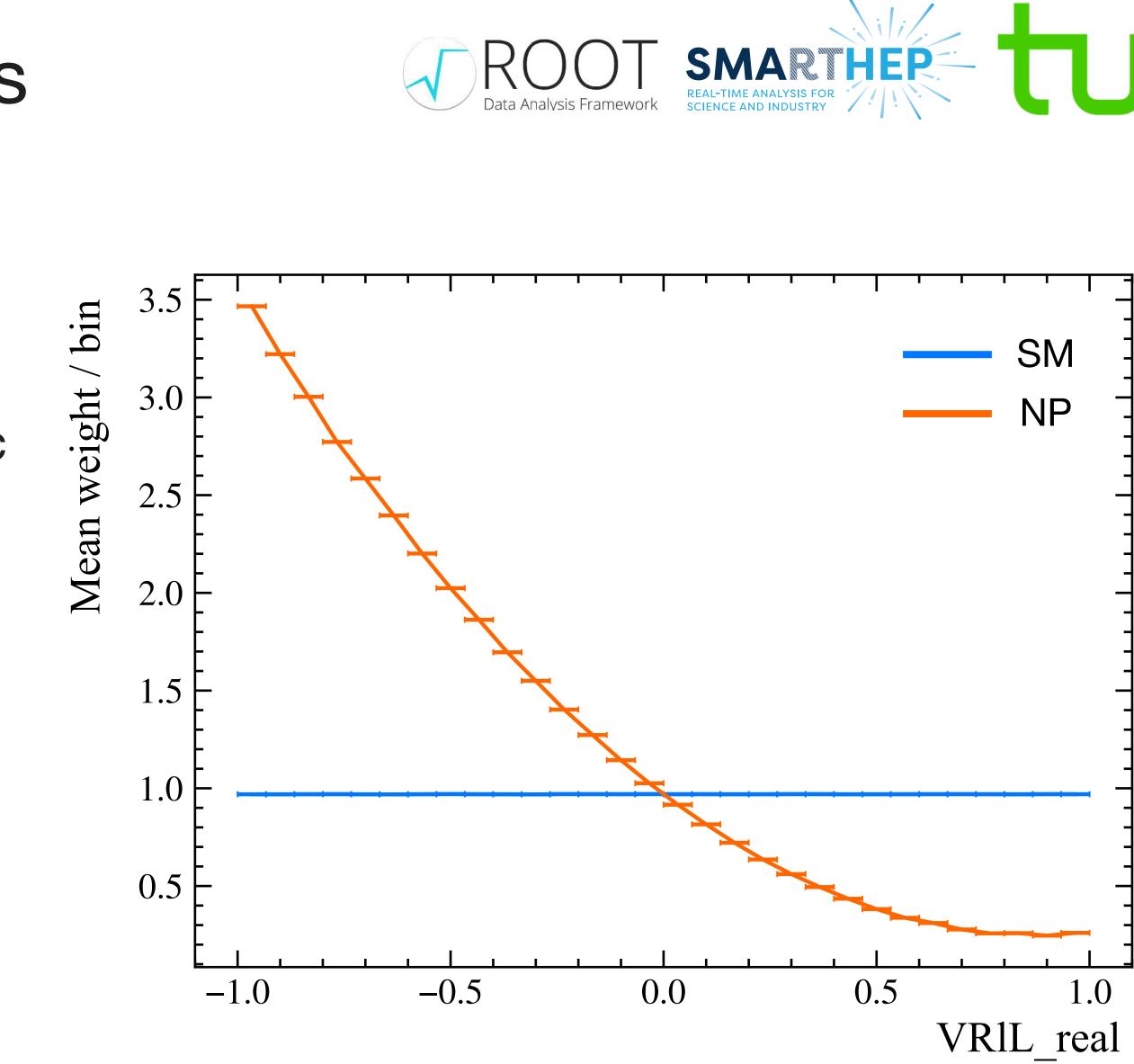
- At the moment, consider $\vec{\theta} = \{\theta\} = \{\text{Re}\{V_{\text{RL}}\}\}$ for demonstration Plan to include multiple WCs and their terms in a single network

Generation of per-event weights

- We wish to generate a SM and NP weight $(w_{SM}^{i} \text{ and } w_{NP}^{i})$ for every event
- Notice that the sum of weights has parabolic dependence on θ (see right)
 - Can define this normalisation as $I(\theta)$
 - Obtain this analytically by generating $\theta \in \{-0.5, 0, +0.5\};$ sum of weights for each gives 3 fixed points
- Then normalise the per-event weights as

$$w_{\rm SM}^{'i} = \frac{w_{\rm SM}^{i}}{I(0)} \qquad \qquad w_{\rm NP}^{'i} = \frac{w_{\rm NP}^{i}}{I(\theta)}$$

Accelerating simulation-based inference in RooFit at LHCb with Clad



Training of the theory-aware NN

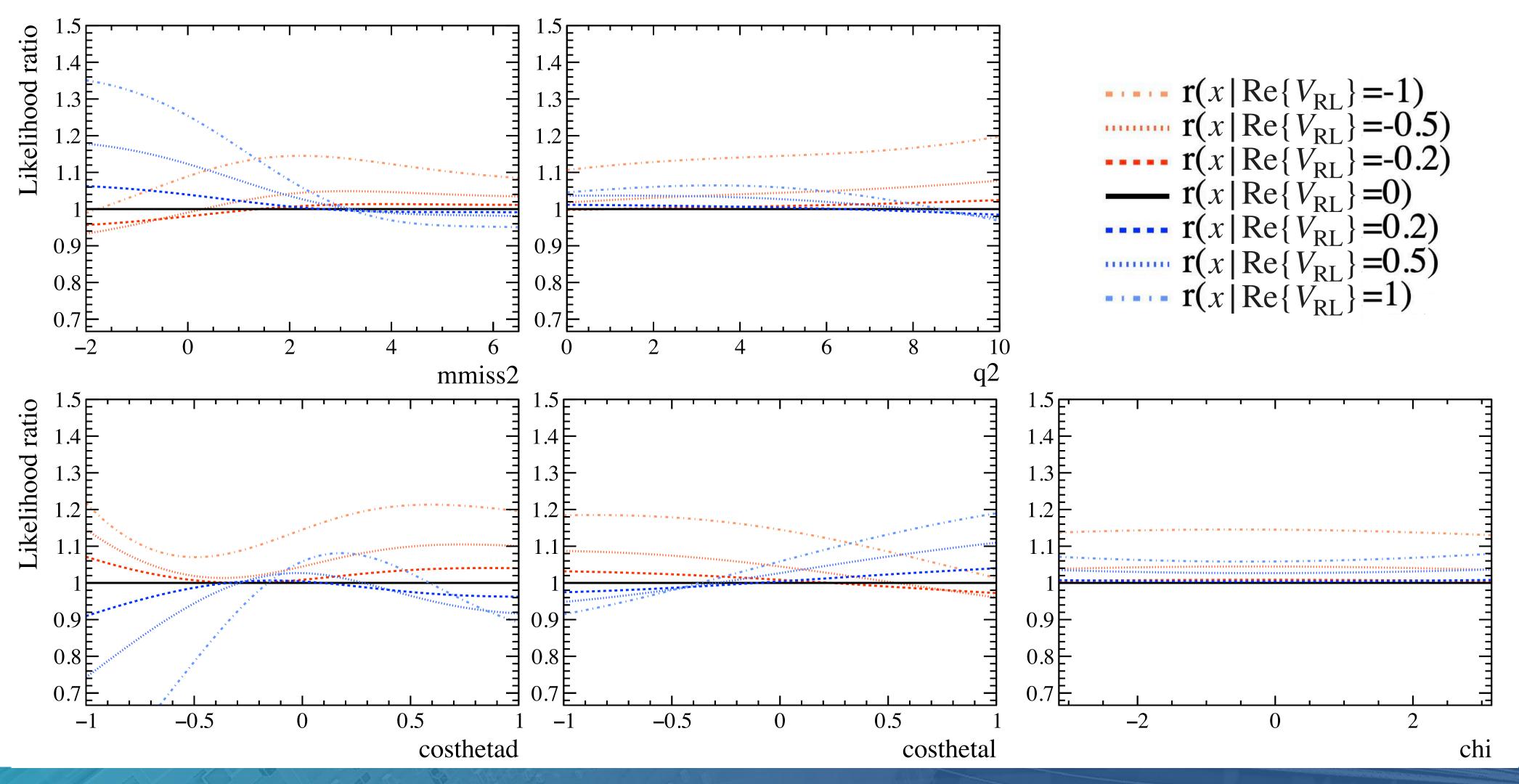
- Every event has weights $w_{SM}^{'i}$ and $w_{NP}^{'i}$, with uniformly distributed random value of $\theta \in [-1,1]$ used for $w_{\rm NP}^{'i}$ per event
- Dataset constructed by concatenatenating data with $w_{SM}^{'i}$ weights (label 0) and with $w_{NP}^{'i}$ weights (label 1), train/test split in data of 80/20
- Using BCEWithLogitsLoss from PyTorch, $\mathscr{L}\left(\vec{x} \mid \theta\right) = \frac{-1}{S_{w}} \sum_{i} w_{\text{NP}}^{'i} \log s\left(\vec{x}_{i} \mid \theta\right) + w_{\text{SM}}^{'i}$
- Optimise with Adam, hyperparameters not for
 - Run for 1k epochs with a learning rate of (
- The likelihood ratio can be constructed from

$$r(\theta) = -\sum_{i} \log\left(\frac{p_{\rm NP}\left(\vec{x}_{i} \mid \theta\right)}{p_{\rm SM}\left(\vec{x}_{i}\right)}\right) = -\sum_{i} \log\left(\frac{s\left(\vec{x}_{i} \mid \theta\right)}{s\left(\vec{x}_{i} \mid 0\right)}\right)$$

loss is

$$\log \left(1 - s \left(\vec{x}_i | \theta\right)\right)$$
 where $S_w = \sum_i w_{NP}^{'i} + w_{SN}^{'i}$
ormally tuned but are in a good ballpark:
0.005, include small L2 regularisation ($\lambda = 0.000$
or the NN score
 $\sum_{i=1}^{n} \left(s \left(\vec{x} \mid \theta\right)\right)$

Probing the learned likelihood ratio



Jamie Gooding

Accelerating simulation-based inference in RooFit at LHCb with Clad

• Computing likelihood ratio in each feature for given values of θ gives insight into learned ratio:

15th May 2025

Applying the learned likelihood ratio

- From trained models to likelihood (see right):
 - 1. Obtain likelihood ratio from NN output, *e.g.*, binding function calling the NN
 - 2. Convert likelihood ratio to PDF with RooWrapperPDF
 - 3. Create negative log-likelihood from PDF and dataset with createNLL method
- This can then be manipulated as any RooFit likelihood object, e.g., applying minimiser
- Perform Asimov test to check that NLL is sensible:
 - 1. Generate per-event weights for all events at a given fixed value of $\theta = \theta_{gen}$
 - 2. Create NLL for dataset with these weights applied
 - 3. Minimise and check that retrieved value θ_{\min} consistent with θ_{gen}


```
# Compute the learned likelihood ratio
llhr_learned = ROOT.RooFit.bindFunction(
    "MyBinFunc", learned_likelihood_ratio, x_var, mu_var)
# Create the learned pdf and NLL sum based on the learned likelihood ratio
pdf_learned = ROOT.RooWrapperPdf(
    "learned_pdf", "learned_pdf", llhr_learned, True)
```

```
nllr_learned = pdf_learned.createNLL(obs_data)
```

RooFit tutorial <u>rf615_simulation_based_inference.py</u>

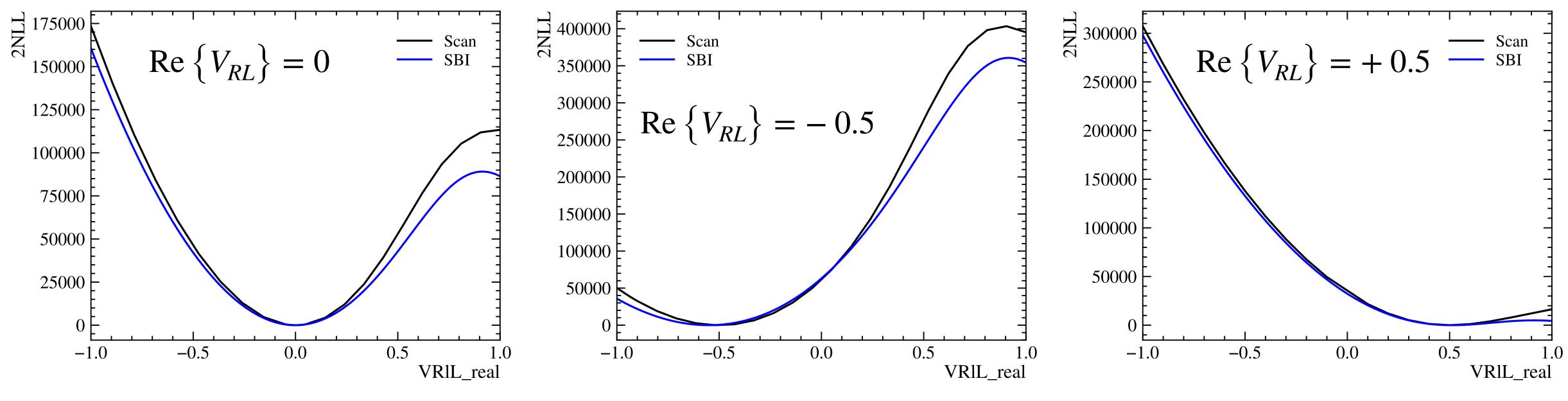
• Since we know sum of weights for given θ , $I(\theta)$, we can extend PDF with $I(\theta)$ as yield

Incorporating a "classical" comparison

- test for a "classical" fit setup
- Take a fitter built on pyhf, HAMMER and redist-Hammer, in use for $b \to c \tau^- \overline{\nu}_{\tau}$ WC global fits
 - Fit takes HAMMER histogram of 5 bins in each of M_{miss}^2 , $\cos \theta_d$, $\cos \theta_l$ and χ^2 , and 4 bins in q^2
 - Uses HAMMER to provide modifications of histogram passed to pyhf
 - Many thanks also to Marco for providing the setup for this project
- As in Asimov scan for SBI likelihood, apply fitter to sample with weights for a given θ_{gen}
- Aim to check that likelihood curves for SBI and classical fit are consistent

Asimov studies for SBI and classical fits

- Performing the Asimov scans for both fits:
 - Training dataset used to construct template for fit
 - Both likelihood curves computed using fits to test dataset

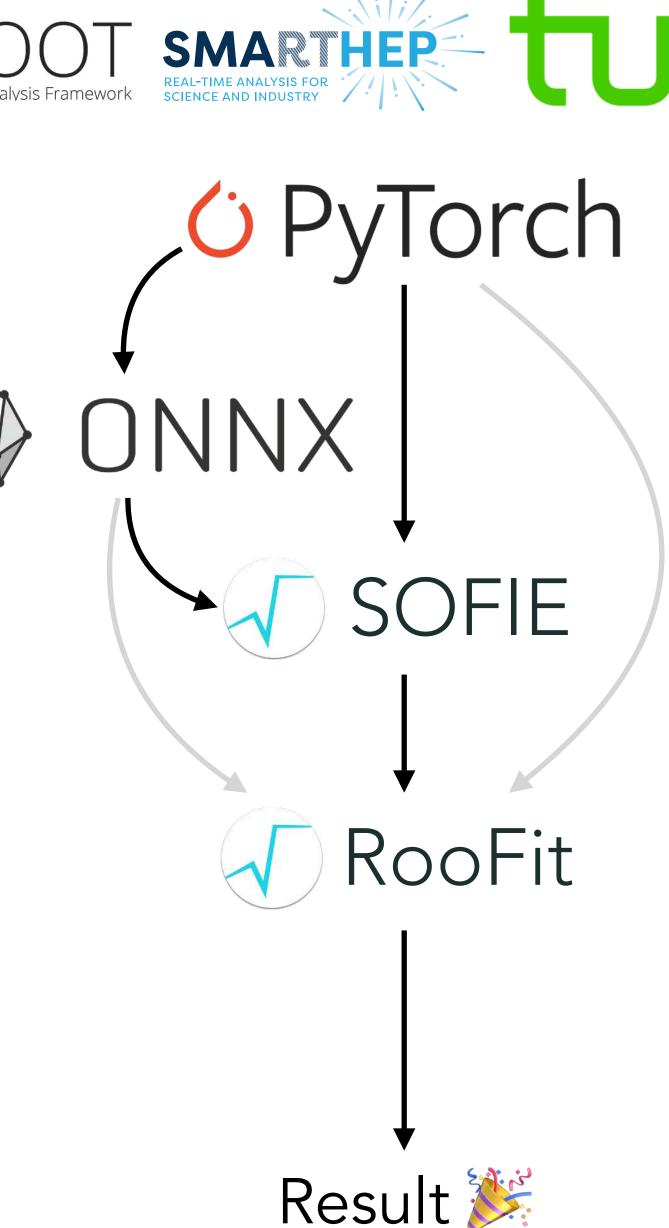


- Generally good agreement between the two fits
- Statistical power of SBI fit strongly dependent on quality of NN training

Automatic differentiation in this workflow

Converting models to code with SOFIE

- Previous RooFit examples involve directly wrapping the call of some Python function
 - Can use PyTorch or ONNXRuntime for this, depending on saved format of model
- Alternative is to use the TMVA SOFIE framework to convert a saved model (ONNX or PyTorch format) into a C++ header
- Can load these headers with ROOT and use TFormula/ RooFormulaVar to manipulate NN in RooFit
- This implementation is at least as performant as wrapped calls to a PyTorch model



Accelerating simulation-based inference in RooFit at LHCb with Clad

Converting models to code with SOFIE

- some Python function • Can use PyTorch or ONNXRuntime for this, depending on saved format of model saved model (ONNX or PyTorch format) into a C++ header RooFit RooFormulaVar to manipulate NN in RooFit calls to a PyTorch model

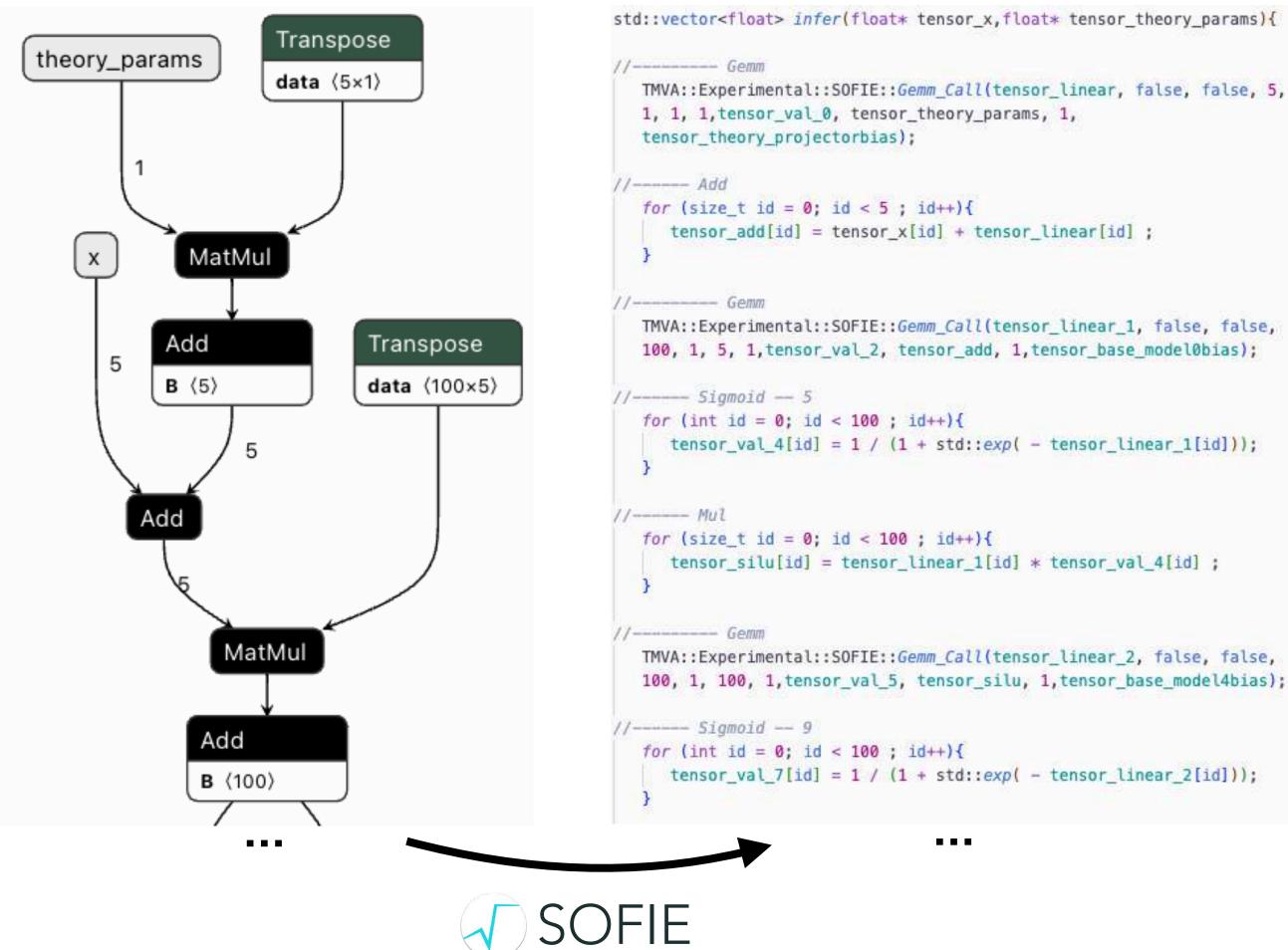
- Previous RooFit examples involve directly wrapping the call of Alternative is to use the TMVA SOFIE framework to convert a Can load these headers with ROOT and use TFormula/ This implementation is at least as performant as wrapped
- Result 🎉 But we should be able to make this even faster...

Accelerating simulation-based inference in RooFit at LHCb with Clad

Automatic differentiation for fast inference

model.pth/model.onxx

model.hxx



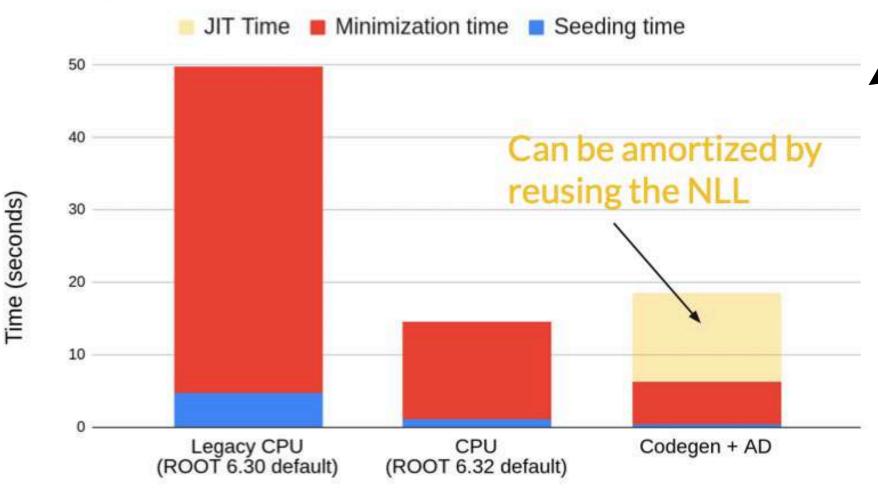
Jamie Gooding

Accelerating simulation-based inference in RooFit at LHCb with Clad

• Would like to use Clad to perform automatic differentiation (AD) of code generated by SOFIE

 $Cla\partial$ Generated C++ code for gradients of model (included in likelihood gradients)

CMS Open Data Higgs Model - single minimization



J. Rembser, ICHEP 2024

Potential analysis speedups?

Status of AD in the workflow

- The aim is to have support in RooFit/Clad so that AD can be handled by RooFit codegen

 - AD should take place all the way down from likelihood to ML inference
- Jonas for the significant work on this!):

Implement coverage of GeMM

[TMVA][SOFIE] Implement wrapper for BLAS::sgemm_ call #18349

°⊱ Merged

#18364 Se Merged

[TMVA][SOFIE] Implement custom pullback for Gemm operator and corresponding test

[math] Forward declare sgemm_ in custom derivatives header #18476

°⊱ Merged

Jamie Gooding

Accelerating simulation-based inference in RooFit at LHCb with Clad

Should allow users to simply construct their likelihoods and specify the codegen backend

• Where do we stand on this? There has been quite some action on this within ROOT (thanks to

Refactoring of code emitted by SOFIE

[TMVA][SOFIE] Small improvements necessary for AD support #18341

°⊱ Merged

[tmva][sofie] Add overload for inference code that takes output params #18399

⊁ Merged

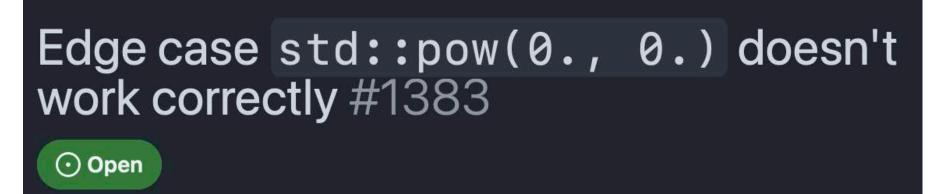
Implement coverage for RooWrapperPDF

[RF] Implement codegen support for the RooWrapperPdf #18699

°⊱ Merged

What still needs to happen?

- With some final tweaks, we can integrate fully with codegen functionality
- Issues opened in Clad covering the final items required for this to work



• For a full reproducer of the RooFit SBI likelihood, see the <u>following gist</u>:

uitargeek / model.dat st active 6 minutes ago • Report abuse	으 Subscribe ☆ Star 0 양 Fork
de Revisions 2	Embed -

Jamie Gooding

Accelerating simulation-based inference in RooFit at LHCb with Clad

What next?

- With this in place, should be able to simply enable AD with codegen
- Would like to do a comparison of performance (timing) in the statistical analysis:
 - With a bound Python call to PyTorch
 - With SOFIE code and AD disabled 2.
 - With SOFIE code and AD enabled 3.
- Preliminary checks show that 1. and 2. are roughly consistent
- Expectation is that, for analysis size datasets, *i.e.*, upwards of $\mathcal{O}(10^6)$, JIT time becomes a small fraction of total timing in 3., and that this therefore quickly surpasses 1. and 2.
 - This is only a fair comparison if TBR optimisation is enabled

23

Conclusion

Conclusion

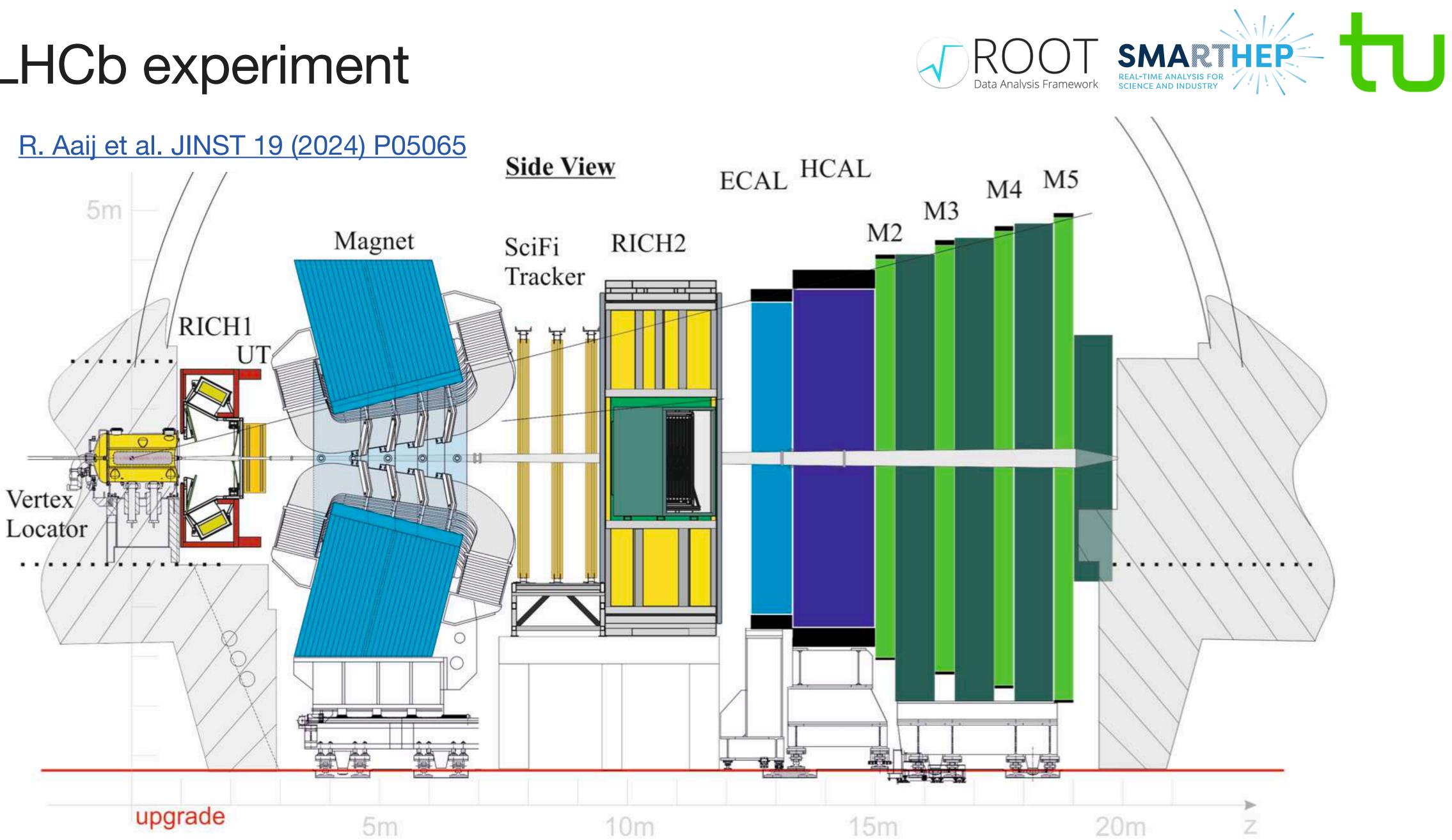
- Project well underway, with most of our goals now complete:
 - LHCb SBI fitting demonstrator workflow constructed
 - Comparisons to the current state-of-the-art established
 - AD of ML inference calls almost enabled
- Still work to be done in the final week of the project:
 - Incorporate efficiency effects in the train/test samples and start to train NNs with combinations of WC terms
 - Training and statistical inference with larger samples sizes (GPU training set up this week should enable this)
 - Consolidate the work of the last few months into a battery of statistical/performance comparisons against the current state-of-the-art

Thank you for your attention Any questions?

Accelerating simulation-based inference in RooFit at LHCb with Clad

25

The LHCb experiment



Accelerating simulation-based inference in RooFit at LHCb with Clad

Jamie Gooding

15th May 2025

