
Differentiating RooFit likelihoods with
Clad

Jonas Rembser (CERN EP-SFT)

 CaaS Monthly Meeting – 05 June 2025

Introduction to RooFit

▶ RooFit: C++ library for statistical data analysis in ROOT
● provides tools for model building, fitting and statistical tests

▶ Recent development focused on:
● Performance boost (preparing for larger datasets of HL-LHC)
● More user friendly interfaces and high-level tools

2

In this presentation we’re summarizing the RooFit developments

that integrate Automatic Differentiation (AD) using Clad.

RooFit was used in the
Higgs boson discovery!

Why RooFit?

RooFit is serving the HEP community well
because of several key features:

▶ Likelihood functions highly optimized
for the context of minimization with Minuit

▶ It takes care of analytical normalization
integrals where possible

▶ User-extensible framework that can cover a wide
range of use cases
● Binned likelihood fits
● Unbinned likelihood fits

▶ Sharing of statistical workspaces thanks to ROOTs
powerful IO system

3

Numeric minimization of RooFit Likelihoods
- By default, RooFit uses numerical differentiation: Minuit 2 changes

parameters on-at-the-time to get the full gradient

- One key concept of RooFit: caching of intermediate results to minimize
redundant computations in gradient evaluation

- Still, gradient dominates minimization time (see also the ICHEP 2022 RooFit
presentation)

Our goal: make evaluating gradients cheap with Automatic differentiation (AD)

4

https://agenda.infn.it/event/28874/contributions/169205
https://agenda.infn.it/event/28874/contributions/169205

Typical bottlenecks in RooFit + Minuit 2

The bottlenecks in likelihood minimization with RooFit are typically:

▶ Function evaluation:
● e.g. if many events (dataset entries to iterate)

▶ Gradient evaluation:
● in case you have many parameters
● This is the bottleneck that we’re addressing with AD

▶ RooFit bookkeeping of what needs reevaluation:
● in case you have deep computation graphs
● Important for caching in numerical gradient calculations

▶ Linear algebra in Minuit 2:
● If you have many parameters, but the function and gradients are cheap

and the computation graphs are shallow

5

Automatic differentiation engine for RooFit

▶ RooFit is a framework to build computation graphs for function
minimization, similar to the ML frameworks TensorFlow or
PyTorch

▶ Different from other frameworks, RooFit didn’t have an
automatic differentiation engine

▶ However, the other frameworks are generally not optimized for
HEP use cases and workflows

Therefore, we have added a differentiation engine based on Clad and
C++ code generation to RooFit.

6

Automatic Differentiation with Clad
RooFit uses Clad to get analytic gradients: Code generation (aka. “codegen”)
More detail in last month’s ROOT blog post
1. Mathematical concept
2. RooFit user code
3. Automatic translation of RooFit model to simple C++ code
4. Gradient of C++ code automatically generated with Clad
5. Gradient code wrapped back into RooFit object

7

Note: for the nominal NLL
function, we still use
RooFits CPU backend to
benefit from vectorization
and caching outside the
gradients.

double gauss(double *x) {

 using RooFit::MathFunc::gaussian;

 return RooFit::MathFunc::gaussian(

 x[0], x[1], x[2]

);

}

https://root.cern.ch/blog/roofit-ad/

Implementation Details
▶ There are four ingredients in RooFit to make the “codegen” happen:

a. A collection of free functions for the math of a given RooFit class
b. The CodegenContext that is has to visit each graph node and collects

the code snippet for each node
c. A codegen library with one free function for each RooFit primitive

that generates the actual code snippet, e.g.:

void codegenImpl(RooGaussian &arg, CodegenContext &ctx) {}
// The dispatching is done by downcasting in Cling:
// no virtual functions needed!

d. The RooFuncWrapper that manages the code generation and AD.
To the outside it looks like any other RooAbsArg.

▶ Our developer documentation explains this in more detail.

8

https://github.com/root-project/root/blob/master/roofit/roofitcore/inc/RooFit/Detail/MathFuncs.h
https://github.com/root-project/root/blob/master/roofit/roofitcore/src/RooFit/CodegenContext.cxx
https://github.com/root-project/root/blob/master/roofit/roofitcore/src/RooFit/CodegenContext.cxx
https://github.com/root-project/root/blob/master/roofit/roofitcore/src/RooFuncWrapper.cxx
https://root.cern/doc/master/group__roofit__dev__docs__ad.html

Implementation Details (combined fits)

▶ One exception to translating the
whole computation graph to one
function:
● Combined fits (likelihood is

sum of likelihoods for different
“channels”, with shared
parameters)

▶ This ensures total JIT time is
proportional to the number of
channels, and that the used stack
memory is constant with the
number of channels

9

double nll_channel_0(

 double *params, // parameters

 const double *obs, // observed data

 const double *xlArr // auxiliary constants

 // (e.g. histogram data)

) {...}

…

double nll_channel_<n>(...) { … }

double combined_nll(double *params,

 const double *obs,

 const double *xlArr) {

 // sum over all channel nlls...

 res += nll_channel_0(params, obs, xlArr);

 // .. plus parameter constraints

 // from auxiliary measurement

}

Structure of generated code for combined likelihoods. The
user doesn’t have to deal with this: everything is done in
the RooFit implementation details.

JIT time and evaluation time of the gradients

▶ Indeed, JIT time for an ATLAS example is scaling linearly with #channels
▶ Splitting up the gradient in multiple functions doesn’t negatively affect

performance
▶ Also, memory consumption of gradient evaluation is very low compared to

the python/ML based frameworks
● Constant factor of the consumption by primal function

10

Scaling Study From CHEP 2023

▶ In the CHEP 23 conference, we have presented a
scaling study as a function of the number of
channels, with a simple fit of two Gaussians plus
exponential to a histogram in each channel

▶ Many things have changed
since then in RooFit, Clad
and Minuit 2

▶ It’s worth to redo the study
to see where we stand

11

7 parameters in
each channel

https://indico.jlab.org/event/459/contributions/11581/

Updated scaling study
▶ Gradient bottleneck disappears

with RooFit AD
▶ New bottleneck according to

profiling: linear algebra in Minuit 2
● expected because function is

cheap (simple model)
▶ Although jitting is slow, for many

parameters it is amortized even
after a single minimization

▶ Speedup reduced compared to
CHEP 2023 result because of
optimizations in numeric gradients
in Minuit 2 with ROOT 6.36

▶ Still: impressive speed-up that
scales well!

12

hardcoded

Note that the hardcoded likelihood fails minimization for
~400 parameters or more, because of missing offsetting.

Higgs Combination Benchmark - ATLAS

13

Detailed breakdown of minimization time for ATLAS
Higgs combination benchmark with different RooFit
backends (49 HistFactory channels, 739 parameters in
total, in rootbench)

Jit time can be amortized
by re-using likelihood!

▶ Using analytic gradients significantly
reduces minimization time for
many-parameter fits with
● ATLAS HistFactory benchmark on the

right
▶ Also numerically more stable: no tricks

required to get better precision on numeric
gradients (e.g. likelihood offsetting)

▶ Caveat: potentially long time for gradient
generation
● To benefit, workflow needs to reuse

likelihood (e.g. toy studies or profile
likelihood scans)

More detail in ICHEP 2024 presentation.

ATLAS fit

https://github.com/root-project/rootbench
https://indico.cern.ch/event/1291157/contributions/5889615/

Higgs Combination Benchmark - CMS

14

▶ Breaking news in April 2024: CMS published
RooFit-based Higgs observation likelihood!

▶ Very heterogeneous likelihood: 672
parameters in 102 channels with
● Template histogram fits
● Analytical shape fits, numerical

integration necessary in some cases
▶ Perfect example to test the new RooFit

developments
▶ Results can be reproduced with the master

branch of the CMS combine tool
More detail in ICHEP 2024 presentation.

CMS fit

https://repository.cern/records/c2948-e8875
https://indico.cern.ch/event/1291157/contributions/5889615/

Profiling RooFit - not a black box!

▶ RooFit serves many use cases and users hit
different bottlenecks

▶ Since written in C++, RooFit code is
convenient to profile

▶ Flamegraphs often inspire significant
performance improvements in RooFit

▶ Guarantees that RooFit continues to scale
well for cutting edge fits

15

Example workflow to profile ROOT macro with perf
and flamegraph.pl:

● Make sure ROOT is built with debug info but
not in debug mode
(-DCMAKE_BUILD_TYPE=RelWithDebInfo)

● Macro needs a main() function so it can be
compiled

g++ $(root-config --cflags --libs) -g \

 -lRooFitCore -lRooFit -o fit_macro \

 fit_macro.C

perf record -F 99 -g -- "./fit_macro"

perf script | stackcollapse-perf.pl > out.perf-folded

flamegraph.pl out.perf-folded > flamegraph.svg

Profiling the minimization - ATLAS

▶ Profiling ATLAS minimization (full flamegrah)
▶ With RooFit AD, gradient is not the bottleneck anymore
▶ New bottleneck is the RooFit parameter bookkeeping in the line search

● In theory, it’s possible to completely eliminate that overhead:
bookkeeping of changed parameters is unnecessary for line search,
because all parameters change anyway

16

gradient

line search

RooFit bookkeeping

function

https://rembserj.web.cern.ch/rembserj/flamegraphs/caas2025/atlas_flamegraph.svg?x=929.1&y=1909

Profiling the minimization - CMS

▶ Profiling CMS minimization (full flamegraph)
▶ Likelihoods in CMS Combine are very optimized, so the RooFit bookkeeping

overhead is relatively larger
▶ Once RooFit bookkeeping overhead is gone, further optimizing the gradient

could be worth it

17

gradient

line search

RooFit bookkeeping

fcn.

https://rembserj.web.cern.ch/rembserj/flamegraphs/caas2025/cms_flamegraph.svg?x=760.1&y=1909

Conclusions
▶ With Clad, RooFit can make use of a powerful engine for Automatic

Differentiation (AD)

▶ Using AD to get analytical gradients in RooFit, the gradients are no longer
the bottleneck in the minimization
● The price to pay is JIT time in the beginning, but this can be amortised if

the likelihood is re-used for multiple fits (e.g. in toy studies or profile
likelihood scans)

▶ There is still work to do in terms of:
● RooFit feature coverage of codegen
● Higher order derivatives (Hessians)
● Integration in LHC experiment frameworks

18J. Rembser | CERN EP-SFT | WLCG/HSF Workshop 2025 | RooFit

