
Finding the Higgs on RISC-V
A story about LLVM JIT, clang-repl, Cling, and ROOT on a new architecture

Jonas Hahnfeld

January 12, 2023

Finding the Higgs on RISC-V

Context – RISC-V & ROOT

Building up the Stack – from LLVM JIT to PyROOT

Conclusions – Remaining Work & Summary

2 / 22

RISC-V – an open standard instruction set architecture

▶ RISC = Reduced Instruction Set Computer
▶ Prominent representative: ARM (in smartphones and supercomputers)

▶ RISC-V = 5th RISC architecture from the University of California, Berkley
▶ Specifications are open source, ISA without licensing fees

▶ Modular design: base RV32I with 40 instructions, RV64I with 15 additional ones
▶ Extensions for Mult., Atomics, Floating Point, Double Precision (= General)
▶ All instructions are 4 bytes, except Compressed Instructions (2 bytes)
▶ More standard extensions (starting with Z) and custom extensions (starting with X)

3 / 22

RISC-V – an open standard instruction set architecture

▶ RISC = Reduced Instruction Set Computer
▶ Prominent representative: ARM (in smartphones and supercomputers)

▶ RISC-V = 5th RISC architecture from the University of California, Berkley
▶ Specifications are open source, ISA without licensing fees

▶ Modular design: base RV32I with 40 instructions, RV64I with 15 additional ones
▶ Extensions for Mult., Atomics, Floating Point, Double Precision (= General)
▶ All instructions are 4 bytes, except Compressed Instructions (2 bytes)
▶ More standard extensions (starting with Z) and custom extensions (starting with X)

3 / 22

RISC-V – an open standard instruction set architecture

▶ RISC = Reduced Instruction Set Computer
▶ Prominent representative: ARM (in smartphones and supercomputers)

▶ RISC-V = 5th RISC architecture from the University of California, Berkley
▶ Specifications are open source, ISA without licensing fees

▶ Modular design: base RV32I with 40 instructions, RV64I with 15 additional ones
▶ Extensions for Mult., Atomics, Floating Point, Double Precision (= General)
▶ All instructions are 4 bytes, except Compressed Instructions (2 bytes)
▶ More standard extensions (starting with Z) and custom extensions (starting with X)

3 / 22

RISC-V Developer Board: StarFive VisionFive

▶ April 2021: announcement to distribute over 1,000 boards
▶ “For testing and development” (open source) with monthly status form
▶ Required to become Individual Member (free sign up)
▶ Submitted a project application for a board

▶ March 2022: new round of development boards
▶ VisionFive, 2x SiFive U74 RV64GC @ 1.0GHz, 8 GB of LPDDR4
▶ HDMI, USB, LAN, WiFi, Bluetooth, 40-pin GPIO header

▶ May 2022: board arrived!

4 / 22

RISC-V Developer Board: StarFive VisionFive

▶ April 2021: announcement to distribute over 1,000 boards
▶ “For testing and development” (open source) with monthly status form
▶ Required to become Individual Member (free sign up)
▶ Submitted a project application for a board – did not get one in the first round

▶ March 2022: new round of development boards
▶ VisionFive, 2x SiFive U74 RV64GC @ 1.0GHz, 8 GB of LPDDR4
▶ HDMI, USB, LAN, WiFi, Bluetooth, 40-pin GPIO header

▶ May 2022: board arrived!

4 / 22

RISC-V Developer Board: StarFive VisionFive

▶ April 2021: announcement to distribute over 1,000 boards
▶ “For testing and development” (open source) with monthly status form
▶ Required to become Individual Member (free sign up)
▶ Submitted a project application for a board – did not get one in the first round

▶ March 2022: new round of development boards
▶ VisionFive, 2x SiFive U74 RV64GC @ 1.0GHz, 8 GB of LPDDR4
▶ HDMI, USB, LAN, WiFi, Bluetooth, 40-pin GPIO header

▶ May 2022: board arrived!

4 / 22

RISC-V Developer Board: StarFive VisionFive

▶ April 2021: announcement to distribute over 1,000 boards
▶ “For testing and development” (open source) with monthly status form
▶ Required to become Individual Member (free sign up)
▶ Submitted a project application for a board – did not get one in the first round

▶ March 2022: new round of development boards
▶ VisionFive, 2x SiFive U74 RV64GC @ 1.0GHz, 8 GB of LPDDR4
▶ HDMI, USB, LAN, WiFi, Bluetooth, 40-pin GPIO header

▶ May 2022: board arrived!

4 / 22

RISC-V Developer Board: StarFive VisionFive

5 / 22

LLVM JIT, clang-repl, Cling, ROOT

▶ LLVM: reusable libraries for compiler toolchains
▶ Also supports just-in-time compilation (JIT)

▶ Cling: interactive interpreting of C++ using Clang and LLVM JIT

▶ clang-repl: upstreaming parts of it into the LLVM project

▶ ROOT: framework for data analysis, for example in High Energy Physics

6 / 22

LLVM JIT, clang-repl, Cling, ROOT

▶ LLVM: reusable libraries for compiler toolchains
▶ Also supports just-in-time compilation (JIT)

▶ Cling: interactive interpreting of C++ using Clang and LLVM JIT

▶ clang-repl: upstreaming parts of it into the LLVM project

▶ ROOT: framework for data analysis, for example in High Energy Physics

6 / 22

LLVM JIT, clang-repl, Cling, ROOT

▶ LLVM: reusable libraries for compiler toolchains
▶ Also supports just-in-time compilation (JIT)

▶ Cling: interactive interpreting of C++ using Clang and LLVM JIT
▶ clang-repl: upstreaming parts of it into the LLVM project

▶ ROOT: framework for data analysis, for example in High Energy Physics

6 / 22

LLVM JIT, clang-repl, Cling, ROOT

▶ LLVM: reusable libraries for compiler toolchains
▶ Also supports just-in-time compilation (JIT)

▶ Cling: interactive interpreting of C++ using Clang and LLVM JIT
▶ clang-repl: upstreaming parts of it into the LLVM project

▶ ROOT: framework for data analysis, for example in High Energy Physics

6 / 22

Building up the Stack – from LLVM JIT to PyROOT

Building up the Stack

▶ Approach for porting to a new architecture: bottom-up

▶ Linux kernel worked; still submitted some patches to the fork

▶ Debian has a RISC-V port and gives access to many pre-built packages

▶ Compiler support is in decent shape (both GCC and LLVM)

⇒ All set for bringing up ROOT!
▶ Ideally while submitting patches to the upstream projects...

8 / 22

Building up the Stack

▶ Approach for porting to a new architecture: bottom-up

▶ Linux kernel worked; still submitted some patches to the fork

▶ Debian has a RISC-V port and gives access to many pre-built packages

▶ Compiler support is in decent shape (both GCC and LLVM)

⇒ All set for bringing up ROOT!
▶ Ideally while submitting patches to the upstream projects...

8 / 22

Building up the Stack

▶ Approach for porting to a new architecture: bottom-up

▶ Linux kernel worked; still submitted some patches to the fork

▶ Debian has a RISC-V port and gives access to many pre-built packages

▶ Compiler support is in decent shape (both GCC and LLVM)

⇒ All set for bringing up ROOT!
▶ Ideally while submitting patches to the upstream projects...

8 / 22

Building up the Stack

▶ Approach for porting to a new architecture: bottom-up

▶ Linux kernel worked; still submitted some patches to the fork

▶ Debian has a RISC-V port and gives access to many pre-built packages

▶ Compiler support is in decent shape (both GCC and LLVM)

⇒ All set for bringing up ROOT!
▶ Ideally while submitting patches to the upstream projects...

8 / 22

Building up the Stack

▶ Approach for porting to a new architecture: bottom-up

▶ Linux kernel worked; still submitted some patches to the fork

▶ Debian has a RISC-V port and gives access to many pre-built packages

▶ Compiler support is in decent shape (both GCC and LLVM)

⇒ All set for bringing up ROOT!
▶ Ideally while submitting patches to the upstream projects...

8 / 22

LLVM

▶ As mentioned: compiler support already in decent shape
▶ Code generation complete for base instructions and standard extensions
▶ Optimizations and support for other extensions ongoing (for example Vector)

▶ JIT support also exists!
▶ Thanks to the fantastic work by StephenFan (luxufan)!
▶ As a backend for JITLink, not the “legacy” RuntimeDyld

9 / 22

LLVM

▶ As mentioned: compiler support already in decent shape
▶ Code generation complete for base instructions and standard extensions
▶ Optimizations and support for other extensions ongoing (for example Vector)

▶ JIT support also exists!
▶ Thanks to the fantastic work by StephenFan (luxufan)!
▶ As a backend for JITLink, not the “legacy” RuntimeDyld

9 / 22

LLVM

▶ Only contribution: Use JITLink by default on RISC-V (D129092)

with that: lli (LLVM Interpreter) works out-of-the-box

$ cat hello.c

#include <stdio.h>

int main() {

printf ("Hello , world!\n");

return 0;

}

$ clang hello.c -S -emit -llvm -o hello.ll

$ lli hello.ll

Hello , world!

10 / 22

https://reviews.llvm.org/D129092

LLVM – Demo

▶ Only contribution: Use JITLink by default on RISC-V (D129092)

with that: lli (LLVM Interpreter) works out-of-the-box

$ cat hello.c

#include <stdio.h>

int main() {

printf ("Hello , world!\n");

return 0;

}

$ clang hello.c -S -emit -llvm -o hello.ll

$ lli hello.ll

Hello , world!

10 / 22

https://reviews.llvm.org/D129092

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!

▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)

▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)

▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)

▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are! (for the first time...)

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)

▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)

▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)
▶ Unfortunately also enables compressed instructions and linker relaxation

▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)
▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations

▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl

▶ Big surprise: clang-repl works out-of-the-box!
▶ Well, with a caveat:

Hard -float ’d’ ABI can ’t be used for a target that

doesn ’t support the D instruction set extension

(ignoring target -abi)

▶ Remember RISC-V’s modularity and extensions? Here, we are!

▶ Solution is pretty boring:
▶ Pass target features from Clang to LLVM JIT (D128853)
▶ Unfortunately also enables compressed instructions and linker relaxation
▶ Leading to additional relocations
▶ That can fortunately be ignored for now (D129159)

11 / 22

https://reviews.llvm.org/D128853
https://reviews.llvm.org/D129159

clang-repl – Demo

clang -repl > #include <stdio.h>

clang -repl > printf ("Hello , world!\n");

Hello , world!

clang -repl > #include <sys/utsname.h>

clang -repl > struct utsname buf;

clang -repl > uname(&buf);

clang -repl > printf (" machine = %s\n", buf.machine);

machine = riscv64

12 / 22

clang-repl – Demo

clang -repl > #include <stdio.h>

clang -repl > printf ("Hello , world!\n");

Hello , world!

clang -repl > #include <sys/utsname.h>

clang -repl > struct utsname buf;

clang -repl > uname(&buf);

clang -repl > printf (" machine = %s\n", buf.machine);

machine = riscv64

12 / 22

Minimal ROOT: Cling – the Plan

▶ Next step: Cling; decided to actually go for a “minimal” ROOT
▶ At that time: LLVM9, without the JITLink backend for RISC-V
▶ But was involved in upgrading to LLVM13, which has the base work
→ Local riscv branch is based on random commit from July

▶ Similar incremental approach:
▶ Start with -Dminimal=ON, make it build

▶ Enable more parts of ROOT once the current version was working
▶ At least that was the plan – becoming greedy did not end up well

13 / 22

Minimal ROOT: Cling – the Plan

▶ Next step: Cling; decided to actually go for a “minimal” ROOT
▶ At that time: LLVM9, without the JITLink backend for RISC-V
▶ But was involved in upgrading to LLVM13, which has the base work
→ Local riscv branch is based on random commit from July

▶ Similar incremental approach:
▶ Start with -Dminimal=ON, make it build

▶ Enable more parts of ROOT once the current version was working
▶ At least that was the plan – becoming greedy did not end up well

13 / 22

Minimal ROOT: Cling – the Plan

▶ Next step: Cling; decided to actually go for a “minimal” ROOT
▶ At that time: LLVM9, without the JITLink backend for RISC-V
▶ But was involved in upgrading to LLVM13, which has the base work
→ Local riscv branch is based on random commit from July

▶ Similar incremental approach:
▶ Start with -Dminimal=ON, make it build
▶ Enable more parts of ROOT once the current version was working

▶ At least that was the plan – becoming greedy did not end up well

13 / 22

Minimal ROOT: Cling – the Plan

▶ Next step: Cling; decided to actually go for a “minimal” ROOT
▶ At that time: LLVM9, without the JITLink backend for RISC-V
▶ But was involved in upgrading to LLVM13, which has the base work
→ Local riscv branch is based on random commit from July

▶ Similar incremental approach:
▶ Start with -Dminimal=ON, make it build
▶ Enable more parts of ROOT once the current version was working
▶ At least that was the plan – becoming greedy did not end up well

13 / 22

Minimal ROOT: Cling – the Start

▶ Add support for RISC-V to build system and configuration

▶ Many relocations and some JITLink features missing in LLVM13

→ Backported many commits from LLVM main branch

▶ For example: problems with generating code including exception handling
▶ Solved by Lang Hames upstream (see commit)

14 / 22

https://github.com/llvm/llvm-project/commit/ba26b5ef15dcbfc69f062b1aea6424cdb186e5b0

Minimal ROOT: Cling – the Start

▶ Add support for RISC-V to build system and configuration

▶ Many relocations and some JITLink features missing in LLVM13

→ Backported many commits from LLVM main branch

▶ For example: problems with generating code including exception handling
▶ Solved by Lang Hames upstream (see commit)

14 / 22

https://github.com/llvm/llvm-project/commit/ba26b5ef15dcbfc69f062b1aea6424cdb186e5b0

Minimal ROOT: Cling – the Start

▶ Add support for RISC-V to build system and configuration

▶ Many relocations and some JITLink features missing in LLVM13

→ Backported many commits from LLVM main branch

▶ For example: problems with generating code including exception handling
▶ Solved by Lang Hames upstream (see commit)

14 / 22

https://github.com/llvm/llvm-project/commit/ba26b5ef15dcbfc69f062b1aea6424cdb186e5b0

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation

▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!

▶ LLVM code generation chose the wrong calling convention without FP registers
▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

https://reviews.llvm.org/D140827

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation

▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!

▶ LLVM code generation chose the wrong calling convention without FP registers
▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

case R_RISCV_RVC_BRANCH: {

int64_t Value = E.getTarget (). getAddress () + E.getAddend () - FixupAddress;

if (LLVM_UNLIKELY (! isInRangeForImm(Value >> 1, 8)))

return makeTargetOutOfRangeError(G, B, E);

if (LLVM_UNLIKELY (! isAlignmentCorrect(Value , 2)))

return makeAlignmentError(FixupAddress , Value , 2, E);

uint16_t Imm8 = extractBits(Value , 8, 1) << 12;

uint16_t Imm4_3 = extractBits(Value , 3, 2) << 10;

uint16_t Imm7_6 = extractBits(Value , 6, 2) << 5;

uint16_t Imm2_1 = extractBits(Value , 1, 2) << 3;

uint16_t Imm5 = extractBits(Value , 5, 1) << 2;

uint16_t RawInstr = *(little16_t *) FixupPtr;

*(little16_t *) FixupPtr =

(RawInstr & 0xE383) | Imm8 | Imm4_3 | Imm7_6 | Imm2_1 | Imm5;

break;

}

case R_RISCV_RVC_JUMP: {

int64_t Value = E.getTarget (). getAddress () + E.getAddend () - FixupAddress;

if (LLVM_UNLIKELY (! isInRangeForImm(Value >> 1, 11)))

return makeTargetOutOfRangeError(G, B, E);

if (LLVM_UNLIKELY (! isAlignmentCorrect(Value , 2)))

return makeAlignmentError(FixupAddress , Value , 2, E);

uint16_t Imm11 = extractBits(Value , 11, 1) << 12;

uint16_t Imm4 = extractBits(Value , 4, 1) << 11;

uint16_t Imm9_8 = extractBits(Value , 8, 2) << 9;

uint16_t Imm10 = extractBits(Value , 10, 1) << 8;

uint16_t Imm6 = extractBits(Value , 6, 1) << 7;

uint16_t Imm7 = extractBits(Value , 7, 1) << 6;

uint16_t Imm3_1 = extractBits(Value , 1, 3) << 3;

uint16_t Imm5 = extractBits(Value , 5, 1) << 2;

uint16_t RawInstr = *(little16_t *) FixupPtr;

*(little16_t *) FixupPtr = (RawInstr & 0xE003) | Imm11 | Imm4 | Imm9_8 |

Imm10 | Imm6 | Imm7 | Imm3_1 | Imm5;

break;

}

https://reviews.llvm.org/D140827

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation

▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!

▶ LLVM code generation chose the wrong calling convention without FP registers
▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

https://reviews.llvm.org/D140827

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation
▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!

▶ LLVM code generation chose the wrong calling convention without FP registers
▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

https://reviews.llvm.org/D140827

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation
▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!

▶ LLVM code generation chose the wrong calling convention without FP registers
▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

https://reviews.llvm.org/D140827

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation
▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!
▶ LLVM code generation chose the wrong calling convention without FP registers

▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

https://reviews.llvm.org/D140827

Minimal ROOT: Cling – the Bumpy Road

▶ Had to implement two relocations related to compressed instructions myself
▶ Now upstreamed and will be released with LLVM16 (D140827)

▶ Issues with constructing “global” C++ objects:
▶ Are registered to be deconstructed atexit, which is intercepted by the JIT
▶ Clang marks dso handle as “local” and LLVM uses “wrong” relocation
▶ Hit the same problem one week later on macOS; now worked around in Cling

▶ Constructing a TH2 did not work, errors about invalid arguments
▶ Remember RISC-V’s modularity and extensions? Here, we are AGAIN!
▶ LLVM code generation chose the wrong calling convention without FP registers
▶ No satisfying solution yet, just hacked the default calling convention

15 / 22

https://reviews.llvm.org/D140827

Minimal ROOT: Cling

▶ C++ REPL works as excepted
▶ only exception (pun intended): throwing and catching exceptions

(if handling would need to unwind the stack through JITted code)

root [0] std::vector <int > v;

root [1] v.push_back (42);

root [2] v

(std::vector <int > &) { 42 }

root [3] v.push_back (43);

root [4] v

(std::vector <int > &) { 42, 43 }

16 / 22

Minimal ROOT: Cling

▶ C++ REPL works as excepted
▶ only exception (pun intended): throwing and catching exceptions

(if handling would need to unwind the stack through JITted code)

root [0] std::vector <int > v;

root [1] v.push_back (42);

root [2] v

(std::vector <int > &) { 42 }

root [3] v.push_back (43);

root [4] v

(std::vector <int > &) { 42, 43 }

16 / 22

Physics Analysis with RDataFrame: df102 NanoAODDimuonAnalysis.C

1 10 210
 (GeV)µµm

1

10

210

310

410

510

E
ve

nt
s

N

Dimuon mass

η
ω,ρ

φ
ψJ/

'ψ Y(1,2,3S) Z

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls
Dimuon mass

17 / 22

PyROOT – Finding the Higgs

▶ For the final step, decided to aim for df103 NanoAODHiggsAnalysis.py
▶ Simplified, but still complex analysis written in Python
▶ #includes a C++ header file to JIT a number of functions
▶ In turn used for a large number of Defines and Filters

▶ Running on OpenData recorded in 2012 with the CMS detector at the LHC
▶ By default uses skimmed subset → reasonable runtime

18 / 22

PyROOT – Finding the Higgs

▶ For the final step, decided to aim for df103 NanoAODHiggsAnalysis.py
▶ Simplified, but still complex analysis written in Python
▶ #includes a C++ header file to JIT a number of functions
▶ In turn used for a large number of Defines and Filters

▶ Running on OpenData recorded in 2012 with the CMS detector at the LHC
▶ By default uses skimmed subset → reasonable runtime

18 / 22

PyROOT – Finding the Higgs

80 100 120 140 160 180
 (GeV)4lm

0

2

4

6

8

10

12

14

16

18

E
ve

nt
s

N

Data

ZZ

 = 125 GeVHm

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls

19 / 22

Conclusions – Remaining Work & Summary

Remaining Work

▶ Implement support for JITLink in master (Draft PR: root-project/root#11997)

▶ Rebase branch on top of current master

▶ Extract build and configuration changes, submit PR

⇒ Then basic support should come with a future LLVM upgrade

▶ Add support for exception handling in JITted code on RISC-V

21 / 22

https://github.com/root-project/root/pull/11997

Remaining Work

▶ Implement support for JITLink in master (Draft PR: root-project/root#11997)

▶ Rebase branch on top of current master

▶ Extract build and configuration changes, submit PR

⇒ Then basic support should come with a future LLVM upgrade

▶ Add support for exception handling in JITted code on RISC-V

21 / 22

https://github.com/root-project/root/pull/11997

Remaining Work

▶ Implement support for JITLink in master (Draft PR: root-project/root#11997)

▶ Rebase branch on top of current master

▶ Extract build and configuration changes, submit PR

⇒ Then basic support should come with a future LLVM upgrade

▶ Add support for exception handling in JITted code on RISC-V

21 / 22

https://github.com/root-project/root/pull/11997

Remaining Work

▶ Implement support for JITLink in master (Draft PR: root-project/root#11997)

▶ Rebase branch on top of current master

▶ Extract build and configuration changes, submit PR

⇒ Then basic support should come with a future LLVM upgrade

▶ Add support for exception handling in JITted code on RISC-V

21 / 22

https://github.com/root-project/root/pull/11997

Remaining Work

▶ Implement support for JITLink in master (Draft PR: root-project/root#11997)

▶ Rebase branch on top of current master

▶ Extract build and configuration changes, submit PR

⇒ Then basic support should come with a future LLVM upgrade

▶ Add support for exception handling in JITted code on RISC-V

21 / 22

https://github.com/root-project/root/pull/11997

Summary

▶ LLVM for RISC-V is in an excellent state!

▶ Cling and ROOT are functional on RISC-V!

▶ Analyses with RDataFrame and even PyROOT work!

⇒ We found the Higgs!

22 / 22

Summary

▶ LLVM for RISC-V is in an excellent state!

▶ Cling and ROOT are functional on RISC-V!

▶ Analyses with RDataFrame and even PyROOT work!

⇒ We found the Higgs!

22 / 22

Summary

▶ LLVM for RISC-V is in an excellent state!

▶ Cling and ROOT are functional on RISC-V!

▶ Analyses with RDataFrame and even PyROOT work!

⇒ We found the Higgs!

22 / 22

Summary

▶ LLVM for RISC-V is in an excellent state!

▶ Cling and ROOT are functional on RISC-V!

▶ Analyses with RDataFrame and even PyROOT work!

⇒ We found the Higgs!

22 / 22

	Context – RISC-V & ROOT
	Building up the Stack – from LLVM JIT to PyROOT
	Conclusions – Remaining Work & Summary

