
GPU Acceleration of Automatic
Differentiation in C++ with Clad

Ioana Ifrim, Princeton University

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Content
1. Motivation

2. Automatic Differentiation and applications - ML Case Study

3. Clad.AD Plugin for Clang

4. C++ Compilation Pipeline

5. Clang Compilation Pipeline. Clad

6. GPU Accelerated AD

7. Clad & CUDA as a Service

8. Summary

9. Future Steps

�2

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Motivation

The aim of Clad is to provide automatic differentiation for C/C++ which works without code modification (including legacy code)

In mathematics and computer algebra, automatic differentiation (AD) is defined as a set of techniques used for numerically evaluating the
derivative of a function specified by a computer program. Automatic differentiation is an alternative technique to Symbolic differentiation and
Numerical differentiation (the method of finite differences) and has applications ranging form the Machine Learning areal of domains to High
Energy Physics.

The range of automatic differentiation (AD) application problems are defined by their high computational requirements and thus can greatly
benefit from parallel implementations on graphics processing units (GPUs).

�3

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Case Study : ML Application
In machine learning, we use gradient descent to update the parameters
of our chosen model. A set of training inputs xi are fed forward into the
model generating corresponding activations yi. We define an error E as
the difference computed between the data target output t and the model
output y3. The error adjoint is propagated backward, resulting in the
gradient with respect to the weights:

This procedure is the central player of the gradient-descent optimisation
algorithm. The required gradient is obtained by the backward
propagation of the susceptibility of the objective value at the output,
using the chain rule to compute partial derivatives of the objective wrt
each of the weights. In this way, the resulting algorithm can be
interpreted as transforming the network evaluation function composed
with the objective function under reverse mode AD (generalisation of the
back-propagation procedure)

�4

https://compiler-research.org/meetings/#caas_06May2021
https://ml-cheatsheet.readthedocs.io/en/latest/glossary.html#glossary-parameters

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

It was historically the case that Machine Learning researchers would dedicate considerable amounts of time to the process
of manual derivation of analytical derivatives which in turn were used in gradient descent procedures.

Case Study : ML Application

Differentiation Methods

Manual Differentiation

�5

https://compiler-research.org/meetings/#caas_06May2021
https://roberttlange.github.io/images/blog_posts_2019/06_Autodiff/autodiff.jpg

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Case Study : ML Application
Numerical Differentiation

Numerical differentiation is the finite difference approximation of derivatives using values of the original function evaluated at some sample points
with ei being i-th unit vector and h > 0 is a small step size

The introduction of round off errors bring forth issues of consistency, convergence, and stability of the numerical solution.

Moreover, the O(n) complexity of numerical differentiation for a gradient in n dimensions is the main obstacle to its usefulness in machine
learning, where n can be as large as millions or billions in state-of-the-art deep learning models

�6

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Case Study : ML Application
Symbolic Differentiation

Symbolic differentiation is the automatic manipulation of expressions for obtaining derivative expressions and it is carried out by applying
transformations representing rules of differentiation such as

Symbolic differentiation can easily produce exponentially large symbolic expressions which take correspondingly long times to evaluate.
This problem is known as expression swell. Moreover, it may require transcribing result back into code.

�7

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Case Study : ML Application
Automatic Differentiation

Automatic generation of a C++ program able to compute the derivative of a given function

The procedure involves applying the chain rule of differential calculus throughout the semantics of the original program

Example Usage: Fitting a logistic regression model by minimising the binary cross-entropy loss of the logistic output

�8

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Derivative function created by the forward-mode AD is guaranteed to have at most a constant factor
(around 2-3) more arithmetical operations compared to the original function.
clad::differentiate(f, ARGS) takes 2 arguments:
1. f is a pointer to a function or a method to be differentiated
2. ARGS is either:
• a single numerical literal indicating an index of independent variable (e.g. 0 for x, 1 for y)
• a string literal with the name of independent variable (as stated in the definition of f, e.g. "x" or "y")

Generated derivative function has the same signature as the original function f, however its return
value is the value of the derivative.

In forward mode auto differentiation, we start from the left-most node and move forward along to the
right-most node in the computational graph – a forward pass

We calculate elementary derivatives using the expressions and leveraging the chain rule to obtain the
intermediate derivatives at each step, obtaining the desired derivative with respect to the first
variable. A forward pass is needed for each desired derivative - – one derivative with respect to each
of the n input parameters.

Automatic Differentiation - Forward Mode

Case Study : ML Application

�9

Deep Multi Layer Neural Network Forward Pass

https://compiler-research.org/meetings/#caas_06May2021
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

In reverse mode autodiff, we start from the outer-most node

Suppose that we are interested in calculating the log derivative with respect to a particular
activation, we employ the chain rule

Machine learning tasks involve a large number of feature space parameters who are to be tuned,
thus reverse mode AD fits perfectly the task of calculating the derivatives of the cost function wrt
model parameters

Automatic Differentiation - Reverse Mode

Case Study : ML Application

�10

Deep Multi Layer Neural Network Reverse Pass

https://compiler-research.org/meetings/#caas_06May2021
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Clad.AD Plugin for Clang

�11

Clad is a compiler plugin extending Clang able to produce derivatives in both forward and reverse mode:

 - Supports derivatives (partial and higher order), gradients, hessians and jacobians.

 - Provides low-level derivative access primitives 

 - Allows embedding in frameworks 

https://compiler-research.org/meetings/#caas_06May2021
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Typical C++ Compilation Pipeline

�12

https://compiler-research.org/meetings/#caas_06May2021
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Clang Compilation Pipeline. Clad

�13

https://compiler-research.org/meetings/#caas_06May2021
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

GPU Accelerated AD

Cuda Thread

Considering our Machine Learning case study, the goal is to compute the
gradient of the cost function with respect to a transformation parameter
vector x.

From an AD perspective, this can be done either by invoking the forward
mode derivative once for every dimension in the parameters space or by a
single pass of the reverse mode derivative.

These passes are bounded by access to and computations performed on
the transformation parameters, hence this process is an excellent candidate
for acceleration through GPU support implementation.

Tasks featuring heavy computations increase their time consumption
proportional with the data sets magnitude. These applications can thus profit
from the usage of threads and in this sense GPU acceleration brings a new
layer of optimisation and a proportional speed up.

�14

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

GPU Accelerated AD

�15

Original Function

Clad Gradient

The CUDA support for Clad includes extensions that allow one to
execute functions on the GPU using many threads in parallel.

Function attributes cloning has been introduced for __device__
__host__ to be carried forward in the Clad gradient definition

Custom derivatives were extended to include __device__
__host__ declaration as well as previous dependencies on the
standard library functionalities not supported by CUDA, were
reimplemented. (falling back on Thrust, the template library for
CUDA based on the Standard Template Library (STL) has proved
to be an issue in the context of Clang compilation)

Clad uses Tape Records for the execution that is replayed such
that the gradient is produced in one pass - this also required
extensions for the CUDA context and removal of dependencies
on the standard library.

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

GPU Accelerated AD

�16

Original Function

Clad Gradient

- Benchmark showcases how using CUDA can influence the
overall AD performance in computation of a gauss gradient
with different dimensions

- GPU : Tesla P100-PCIE-16GB
- CPU : Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

More benchmarks coming soon *

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

GPU Accelerated AD

�17

parallel code

serial code

serial code

parallel function

body generated by Clad

device function pointer

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Clad & CUDA as a Service

�18

The demo shows cling usage of clad as a plugin to produce a derivative on the fly and send it to a CUDA kernel for execution

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Summary
- The generated Clad derivatives are now supported for computations on CUDA kernels thus allowing for further optimisation

- Scheduling still requires a certain degree of user input which we aim to further automize

- Clad can now handle a hybrid GPU/CPU setup, where the generation is currently done on the CPU, while the execution can be parallelised
on GPUs.

- Challenges in terms of:

- CUDA version Clang & Cling compatibility can be observed in implementation choices (e.g. not using Thrust (C++ template library for
CUDA based on the Standard Template Library (STL)) due to compatibility issues with Clang) (fixed)

- Passing the gradient function by pointer when compiling with Clang (fixed) / Cling (wip)

�19

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Future Steps

- Full support of arrays

- Enable AD support for second order derivatives for HEP analysis through ROOT (data analysis software package) via Clad : GSoC Project

- In the interactive case - provide an api which synthesises the CUDA kernel automatically and alleviates the user’s need to deal with memory
optimisation

- Currently the scheduling procedure requires a certain degree of user input to make it suitable for a hybrid CPU/GPU setup. A future aim is to
fully automate this last step for complete CUDA integration, where the full toolchain process needs to be formalised with both scheduling
optimisation and global memory constraints in mind

�20

https://compiler-research.org/meetings/#caas_06May2021

Ioana Ifrim - GPU Acceleration of Automatic Differentiation in C++ with Clad - CaaS Monthly Meeting - 06 May 2021

Thank you!

!21

https://compiler-research.org/meetings/#caas_06May2021

