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Motivation

The aim of Clad is to provide automatic differentiation 
for C/C++ which works without code modification

In mathematics and computer algebra, automatic 
differentiation (AD) is defined as a set of techniques used for 
numerically evaluating the derivative of a function specified by 
a computer program. 

Automatic differentiation is an alternative technique to 
Symbolic differentiation or Numerical differentiation (the 
method of finite differences) and powers gradient-based 
optimisation algorithms used in applications such as Deep 
Learning, Robotics, High Energy Physics, etc. 
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 Deep Learning use-case : Gradient Descent 
= gradient of the cost function with respect to 
the neural network parameters

https://indico.cern.ch/event/1040761/
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation
https://roberttlange.github.io/images/blog_posts_2019/06_Autodiff/autodiff.jpg
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AD Approaches
Classification
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Domain Specific 
Languages (DSL) Tracing / Taping Source 

Transformation

source code transformation is 
performed on a data flow 
graph (computation graph)  

the compute graph is 
constructed as the program is 
executed, the execution is 
recorded, transformed and 
compiled “just-in-time”

the compute graph is 
constructed before compilation 
and then transformed and 
compiled 

requires both the code to be 
rewritten and the DSL to 
provide support for all the 
operations in the original code 

typically uses operator 
overloading (special floating 
point type); replaces all 
elementary operations by the 
overloaded 

typically uses a custom parser 
to build code representation 
and produce the transformed 
code

tailored implementation easy to implement difficult to implement 
(especially for C++)

the speed of this approach is 
correlated with the similarity 
factor between the DSL and 
the original code

inefficient, needs code 
modification 

efficient as many computations 
and optimisations are done 
ahead of time

Theano, TensorFlow, PyTorch C++ : ADEPT, Python: JAX Tapenade, Enzyme, Clad 

Implementation approaches in AD can be classified based on the 
amount of work done at compile time. Thus, we can identify 
several approaches: Domain Specific Languages (DSL), Tracing  / 
Taping and Source Transformation

By  keeping all the intricate knowledge of the original source 
code, source transformation approaches enable optimisation

https://indico.cern.ch/event/1040761/
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Clad: An approach to source transformation AD
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Clad uses the source transformation approach by 
statically analysing the original code to produce a gradient 
function in the source code language 

- mitigates the difficulties related to custom C++ parsers

Clad Example

#include "clad/Differentiator/Differentiator.h" 
#include <iostream> 

double f(double x, double y) { return x * y; } 

int main() { 

  auto f_dx = clad::differentiate(f, “x"); 

  // derivative of ‘f' - (x, y) = (3, 4) 
  std::cout << f_dx.execute(3, 4) << std::endl;  
  // prints: 4 

  f_dx.dump(); // prints: 
  /*  
     double f_darg0(double x, double y) { 
         double _d_x = 1;  
         double _d_y = 0; 
         return _d_x * y + x * _d_y; 
     }  
   */ 
}

- having full access to the Clang compiler’s internals means 
that Clad is able to follow the high-level semantics of 
algorithms and can perform domain-specific optimisations

- it can automatically generate code (re-targeting C++) on 
accelerator hardware with appropriate scheduling

- has a direct connection to compiler diagnostics engine and 
thus can produce precise and expressive diagnostics 
positioned at desired source locations

https://indico.cern.ch/event/1040761/
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Clad.AD Plugin for Clang
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Clad is a compiler plugin extending Clang able to produce derivatives in both forward and reverse mode: 

https://clad.readthedocs.io / https://github.com/vgvassilev/clad

•Features both reverse mode AD (backpropagation) and forward mode AD

•Computes derivatives of functions, member functions, functors and lambda expressions

•Supports a large subset of C++ including if statements, for, while loops

•Provides direct functions for the computation of Hessian and Jacobian matrices

•Supports array differentiation, that is, it can differentiate either with respect to whole 
arrays or particular indices of the array

•Features numerical differentiation support, to be used where automatic differentiation is not feasible

•Requires no code modification for computing derivatives of existing codebase

https://indico.cern.ch/event/1040761/
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744
https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad
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Clang Compilation Pipeline. Clad 
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Clad is a Clang Plugin transforming the AST of the supported languages : C++,  CUDA, C, ObjC

double f(double x) {
  return x * x;
}

FunctionDecl f 'double (double)'
|-ParmVarDecl x 'double'
`-CompoundStmt
  `-ReturnStmt
    `-BinaryOperator 'double' '*'
      |-ImplicitCastExpr 'double' <LValueToRValue>
      | `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'
      `-ImplicitCastExpr 'double' <LValueToRValue>
        `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

FunctionDecl 0x7f7f801dbff8 <<invalid sloc>> <invalid sloc> f_darg0 'double (double)'
|-ParmVarDecl 0x7f7f801dc090 <<invalid sloc>> <invalid sloc> used x 'double'
`-CompoundStmt 0x7f7f801dc3d0 <<invalid sloc>>
  |-DeclStmt 0x7f7f801dc190 <<invalid sloc>>
  | `-VarDecl 0x7f7f801dc118 <<invalid sloc>> <invalid sloc> used _d_x 'double' cinit
  |   `-ImplicitCastExpr 0x7f7f801dc178 <<invalid sloc>> 'double' <IntegralToFloating>
  |     `-IntegerLiteral 0x7f7f801dc0f8 <<invalid sloc>> 'int' 1
  `-ReturnStmt 0x7f7f801dc398 <<invalid sloc>>
    `-BinaryOperator 0x7f7f801dc318 <<invalid sloc>> 'double' '+'
      |-BinaryOperator 0x7f7f801dc298 <<invalid sloc>, T.cpp:3:32> 'double' '*'
      | |-ImplicitCastExpr 0x7f7f801dc268 <<invalid sloc>> 'double' <LValueToRValue>
      | | `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 
0x7f7f801dc118 '_d_x' 'double'
      | `-ImplicitCastExpr 0x7f7f801dc280 <col:32> 'double' <LValueToRValue>
      |   `-DeclRefExpr 0x7f7f801dc208 <col:32> 'double' lvalue ParmVar 0x7f7f801dc090 
'x' 'double'
      `-BinaryOperator 0x7f7f801dc2f0 <col:30, <invalid sloc>> 'double' '*'
        |-ImplicitCastExpr 0x7f7f801dc2c0 <col:30> 'double' <LValueToRValue>
        | `-DeclRefExpr 0x7f7f801dc1d0 <col:30> 'double' lvalue ParmVar 0x7f7f801dc090 
'x' 'double'
        `-ImplicitCastExpr 0x7f7f801dc2d8 <<invalid sloc>> 'double' <LValueToRValue>
          `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 
0x7f7f801dc118 '_d_x' 'double'

double f_darg0(double x) {
  double _d_x = 1;
  return _d_x * x + x * _d_x;
}

Code 
Clang 

Frontend

AST
Clad

AST
Clang 

Backend
Binary

Der.cxx gcc/msvc

Code Clad can:   

• Decompile that AST into code - which is code 
that you can compile with any other compilation 
pipeline (gcc/ msvc/ etc), then use it by plugging 
it in your library

• Produce the AST and pipe it to the backend 

https://indico.cern.ch/event/1040761/
https://www.researchgate.net/figure/Deep-Multi-Layer-Neural-Network-Forward-Pass-and-Backpropagation-21_fig1_341292744
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Clad Features Showcase
Forward Mode
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double f(double x, double y) {  
  return x * y;  
} 

int main() { 

  auto f_dx = clad::differentiate(f, “x"); 

  f_dx.dump();  

  /* prints: 
  double f_darg0(double x,  
                 double y) { 
      double _d_x = 1;  
      double _d_y = 0; 
      return _d_x * y + x * _d_y; 
  } */ 
}

Reverse Mode
double fn(double x, double y) { 
  return x*x + y*y; 
} 

int main() { 

  auto d_fn_2 = clad::gradient(fn, "x, y"); 

  d_fn_2.dump(); 

  /* prints: 
  void fn_grad(double x, double y, clad::array_ref<double> _d_x,    
               clad::array_ref<double> _d_y) { 
      double _t2 = x, t3 = x, _t4 = y, _t5 = y;  
      double fn_return = _t3 * _t2 + _t5 * _t4; 
      goto _label0; 
    _label0: {  
          double _r0 = 1 * _t2;  
          * _d_x += _r0;  
          double _r1 = _t3 * 1;  
          * _d_x += _r1;  
          double _r2 = 1 * _t4;  
          * _d_y += _r2;  
          double _r3 = _t5 * 1;  
          * _d_y += _r3; 
     } 
  } */ 
}

The independent parameter can be 
specified either using the parameter name 
or the parameter index; d_fn_1.execute 
returns the computed derivative. 

If no parameter is specified, then the 
function is differentiated w.r.t all the 
parametersDeep Multi Layer Neural Network 

Forward/Reverse Pass 

https://indico.cern.ch/event/1040761/


Ioana Ifrim  - Automatic Differentiation in C++ and Cuda - 24th European Workshop on Automatic Differentiation - 04 Nov 2021 

Clad Features Showcase
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Hessian
#include “clad/Differentiator/Differentiator.h" 
#include <iostream> 

double kinetic_energy(double mass, double velocity) { 
  return mass * velocity * velocity * 0.5; 
} 

int main() { 

  // Can manually specify independent arguments 
  auto hessian = clad::hessian(kinetic_energy, "mass, velocity”); 

  // Creates an empty matrix to store the Hessian in 
  // 2 independent variables require 4 elements (2^2=4) 
  double matrix[4]; 

  // Substitutes these values into the Hessian function 
  // pipes the result into the matrix variable. 
  hessian.execute(10, 2, matrix); 

  std::cout<<"Hessian matrix:\n"; 
  for (int i=0; i<2; ++i) { 
    for (int j=0; j<2; ++j) { 
      std::cout<<matrix[i*2 + j]<<" "; 
    } 
    std::cout<<“\n"; 
  } 
}

Both support differentiating w.r.t multiple parameters. Moreover, in both cases, the array which will store the computed 
Hessian or Jacobian matrix should be passed as the last argument to the call to CladFunction::execute.

Jacobian
#include “clad/Differentiator/Differentiator.h" 
#include <iostream> 

void fn(double i, double j, double *res) { 
  res[0] = i*i; 
  res[1] = j*j; 
  res[2] = i*j; 
} 

int main() { 

  auto d_fn = clad::jacobian(fn); 
  double res[3] = {0, 0, 0}; 

  // Creates a matrix to store the Jacobian in 
  // It will store in this case 6 derivatives 
  double matrix[6] = {0, 0, 0, 0, 0, 0}; 

  // Substitutes these values into the Jacobian function 
  // pipes the result into the derivatives variable.  
  d_fn.execute(3, 5, res, matrix); 

  std::cout<<"Jacobian matrix:\n"; 
  for (int i=0; i<3; ++i) { 
    for (int j=0; j<2; ++j) { 
      std::cout<<matrix[i*2 + j]<<" "; 
    } 
    std::cout<<“\n"; 
  } 
}

https://indico.cern.ch/event/1040761/
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Newly Supported C++ Constructs
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Functors

#include "clad/Differentiator/Differentiator.h" 

// A class type with user-defined call operator 
class Equation { 
  double m_x, m_y; 

  public: 
  Equation(double x, double y) : m_x(x), m_y(y) {} 
  double operator()(double i, double j) { 
    return m_x*i*j + m_y*i*j; 
  } 
  void setX(double x) { 
    m_x = x; 
  } 
}; 

  Equation E(3,5); 

  // differentiate `E` wrt parameter `i` 
  // `E` is saved in the `CladFunction` object `d_E` 

  auto d_E = clad::differentiate(E, "i"); 

  // differentiate `E` wrt parameter `i` 
  // `E` is saved in the `CladFunction` object `d_E_ptr` 
  auto d_E_ptr = clad::differentiate(&E, "i");

Differentiating functor objects in Clad 
(GSoC 2021- Parth Arora) 

• functor objects are stateful
• can be used to create configurable algorithms 
• calls to functor objects are often inlined by compilers - better performance

https://indico.cern.ch/event/1040761/
https://indico.cern.ch/event/1066812/contributions/4485920/attachments/2301761/3915402/IRIS-HEP-Add-support-for-differentiating-functors-presentation.pdf
https://indico.cern.ch/event/1066812/contributions/4485920/attachments/2301761/3915402/IRIS-HEP-Add-support-for-differentiating-functors-presentation.pdf
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Newly Supported C++ Constructs
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Differentiating functor objects in Clad 
(GSoC 2021- Parth Arora) 

Lambda Expressions

#include "clad/Differentiator/Differentiator.h" 

auto momentum = [](double mass, double velocity) 
{ 
  return mass * velocity; 
}; 

• defining an anonymous function object (a closure) at the location where it's invoked or passed as an argument to a 
function

//both ways are equivalent 
auto d_momentum = clad::differentiate(&momentum, “velocity”); 
auto d_momentumRef = clad::differentiate(momentum, “velocity"); 

//compute derivatives wrt ‘velocity’ when (mass, velocity) = (5,7) 
std::cout<<d_momentum.execute(5, 7)<< “\n”; 
  
auto d_momentumGrad = clad::gradient(&momentum); 
double d_mass=0, d_velocity=0; 

//compute derivatives wrt ‘mass’ and ‘velocity’  
//given (mass, velocity) = (5,7) 

d_momentumGrad.execute(5, 7, &d_mass, &d_velocity); 
std::cout<<d_mass<<“ “<<d_velocity<< “\n”; 

https://indico.cern.ch/event/1040761/
https://indico.cern.ch/event/1066812/contributions/4485920/attachments/2301761/3915402/IRIS-HEP-Add-support-for-differentiating-functors-presentation.pdf
https://indico.cern.ch/event/1066812/contributions/4485920/attachments/2301761/3915402/IRIS-HEP-Add-support-for-differentiating-functors-presentation.pdf
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__device__ __host__ double gauss(double* x, double* p, 
                                 double sigma, int dim) {
    double t = 0;
    for (int i = 0; i< dim; i++)
        t += (x[i] - p[i]) * (x[i] - p[i]);
    t = -t / (2*sigma*sigma);
    return std::pow(2*M_PI, -dim/2.0) * std::pow(sigma, -0.5) * std::exp(t);
}

Clad New CUDA Support

void gauss_grad(double* x, double* p, double sigma, int dim, 
           clad::array_ref<double> _d_x, clad::array_ref<double> _d_p,   
           clad::array_ref<double> _d_sigma, clad::array_ref<double> _d_dim)            
           __attribute__((device)) __attribute__((host)) {
    double _d_t = 0;
    unsigned long _t2;
    int _d_i = 0;
    clad::tape<double> _t3 = {};
    clad::tape<int> _t4 = {};
    …………………………………………………………………
    for (; _t2; _t2–) {
        double _r_d0 = _d_t;
        _d_t += _r_d0;
        double _r0 = _r_d0 * clad::pop(_t3);
        _d_x[clad::pop(_t4)] += _r0;
        _d_p[clad::pop(_t5)] += -_r0;
        double _r1 = clad::pop(_t6) * _r_d0;
        _d_x[clad::pop(_t7)] += _r1;
        _d_p[clad::pop(_t8)] += -_r1;
        _d_t -= _r_d0;
    }
}

Clad can compute the gradient of host/ device functions 

CUDA computation kernels can now call Clad defined 
derivatives  

Currently working on: 

• enabling automatic offloading of gradient 
computations to GPU 

• differentiating CUDA kernels 

auto gauss_g = clad::gradient(gauss);

https://indico.cern.ch/event/1040761/
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Clad & CUDA as a Service
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The demo shows cling usage of clad as a plugin to produce a derivative on the fly and send it to a CUDA kernel for execution

https://indico.cern.ch/event/1040761/
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Clad as a Service
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Usage of CLAD within the Jupyter Notebook with the help of “xeus-cling” (a Jupyter kernel for C++ based on the C++ interpreter cling)

https://indico.cern.ch/event/1040761/
https://github.com/jupyter-xeus/xeus-cling


Ioana Ifrim  - Automatic Differentiation in C++ and Cuda - 24th European Workshop on Automatic Differentiation - 04 Nov 2021 

Clad integration in ROOT
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ROOT is a data analysis software package used to process data 
in the field of high-energy physics. 

Clad has replaced numerical gradient calculations for formula 
based functions. 

Clad Hessian Mode in ROOT 
(GSoC 2021- Baidyanath Kundu) 

The Clad gradient is then used to compute the gradient of the 
objective function (       or negative log-likelihood function) when 
fitting 

Thus, ROOT fitting class computes                   from                      
obtained using Clad

Clad VS Numerical Differentiation of 
objective function 

* current implementation still requires one numerical gradient 
call for second derivatives (when seeding) - higher speedups 
will be possible when introducing second derivatives 
computation using Clad

https://indico.cern.ch/event/1040761/
https://indico.cern.ch/event/1066812/contributions/4509414/attachments/2301766/3915408/Utilize%20second%20order%20derivatives%20from%20Clad%20in%20ROOT.pdf
https://indico.cern.ch/event/1066812/contributions/4509414/attachments/2301766/3915408/Utilize%20second%20order%20derivatives%20from%20Clad%20in%20ROOT.pdf
https://indico.cern.ch/event/1007651/contributions/4228829/attachments/2188821/3698913/Clad%20--%20Automatic%20Differentiation%20in%20C++%20and%20Clang%20.pdf
https://indico.cern.ch/event/1007651/contributions/4228829/attachments/2188821/3698913/Clad%20--%20Automatic%20Differentiation%20in%20C++%20and%20Clang%20.pdf
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Summary
• Clad uses the source transformation approach by statically analysing the original code to produce a gradient function in the source code 

language

• Clad can produce the AST and pipe it to the backend as well as decompile that AST into code. Moreover,  one can compile the produced 
code with any other preferred compilation pipeline (gcc/ msvc/etc), then plug it in one’s library and use it 

• Continuous effort is put into expanding the support subset of C++, such as support for differentiating continue and break statements

• The new CUDA support means generated Clad derivatives are now supported for computations on CUDA kernels thus allowing for further 
optimisation

• The performance results in ROOT show good improvement, however work is ongoing on a set of general benchmarks 

• Currently the scheduling procedure requires a certain degree of user input to make it suitable for a hybrid CPU/GPU setup. Our current aim is 
to fully automate this last step for complete CUDA integration, where the full toolchain process needs to be formalised with both scheduling 
optimisation and global memory constraints in mind
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https://indico.cern.ch/event/1040761/
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People
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https://indico.cern.ch/event/1040761/
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Thank you! 
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