
Making Likelihood Calculations Fast
Using Automatic Differentiation in

RooFit
Garima Singh (Princeton University), Jonas Rembser (CERN),
Lorenzo Moneta (CERN), Vassil Vassilev (Princeton University)

compiler-research.org
This project was supported in part by the NSF (USA) Grant OAC-1931408 and NSF (USA) Cooperative Agreement OAC-1836650.

https://compiler-research.org/

Introduction
Goal

Add automatic differentiation (AD) to RooFit, a statistical modelling library packed in ROOT.

1Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Methods of Automatic Differentiation
The Two Techniques

1

Source Code Transformation AD Operator Overloading AD

● Synthesize derivative code from the input
program automatically.

● Faster - allows for easier compiler
optimization.

● Eg. Tapenade, Enzyme, Clad

● Use a new data type and operator overloading
to keep track of derivatives as the original
program executes.

● Slower and requires hand writing annotations
and changing data types.

● Eg. PyTorch/TensorFlow, CoDiPack, etc.

2
[1] : https://en.wikipedia.org/wiki/Automatic_differentiation

[1] [1]

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

An Efficient Method of Differentiation
Compiler-Based Source Transformation AD: Clad

1

Clad[1], a source code transformation AD tool, implemented as a plugin to the clang
compiler. Clad inspects the internal compiler representation of the target function to
generates its derivative.

double absFunc(double x) {

 if (x < 0) return -x;

 else return x;

}

double absFunc_darg0(double x) {

 double _d_x = 1;

 if (x < 0) return -_d_x;

 else return _d_x;

}

clad::differentiate(absFunc)

● Proximity to compiler allows for more control over code generation.
● Support for a good subset of modern C++ constructs.

3
[1] : https://github.com/vgvassilev/clad

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

https://github.com/vgvassilev/clad

An Efficient Method of Differentiation
Compiler-Based Source Transformation AD: Clad

1

[3] :https://github.com/root-project/cling

Clad also can be used within Cling[3], the C++ interpreter used with ROOT.

Binder Tutorial

4Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

https://github.com/root-project/cling
https://mybinder.org/v2/gh/vgvassilev/clad/master?labpath=%2Fdemos%2FJupyter%2FIntro.ipynb

5

Motivation
Why AD?

Image ref: Automatic Differentiation of Binned Likelihoods With Roofit and Clad - Garima Singh,Jonas Rembser, Lorenzo Moneta, Vassil Vassilev, ACAT 2022

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Automatic Differentiation in RooFit
Sounds easy…

1

What we want to differentiate

6

Made up of various RooFit objects

Our AD tool of choice

A typical RooFit statistical model

Differentiable RooFit Models!

Actually, not so simple…

RooFit has an object oriented model which
deliberately hides the differential properties of the

nodes in favor of ease of use.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Automatic Differentiation in RooFit
Challenges

1

RooFit represents all mathematical formulae as RooFit objects which are then brought
together into a compute graph. This compute graph makes up a model on which further
data analysis is run.

Gaussian Probability
Distribution Function (pdf)

//Obj represents f(x) here
RooGaussian obj(x, mu, sigma);

Equivalent Code in C++ with RooFit

Programmers/users know this relationship. But how do
we connect these two together when a connection is not

obvious in code?

7Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

8

Automatic Differentiation in RooFit
How Does it work?

What that we want to differentiate C++ code the AD tool can
understand

Some way to expose differentiable
properties of the graph as code.

C++ code the AD tool can
understand

The AD tool Derivative code of the model!

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

9

Automatic Differentiation in RooFit
How Does it work?

What that we want to differentiate C++ code the AD tool can
understand

Define 2 Functions in RooFit

void RooGaussian::translate(...) override {

 result = "ADDetail::gauss(" +

 _x->getResult() +

 " ," + _mu->getResult() +

 " ," + _sigma->getResult() + ")";

}

The “glue” function enabling graph squashing.

double ADDetail::gauss(double x, double mean, double sigma) {

 const double arg = x - mean;

 const double sig = sigma;

 return std::exp(-0.5 * arg * arg / (sig * sig));

}

Stateless function enabling differentiation of each class.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

10

Automatic Differentiation in RooFit
How Does it work?

What that we want to differentiate C++ code the AD tool can
understand

Define 2 Functions in RooFit

ADDetail::gauss(x, mu, sig)
The equivalent code generated

RooGaussian::evaluate()
The RooFit call to evaluate a gaussian

ADDetail::gauss(x, mu, sig) / ADDetail::gaussIntegral(...)

The equivalent code generated
(given the class supports analytical integrals)

- Bookkeeping

& caching

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

11

Automatic Differentiation in RooFit
The Big Picture

C++ code the AD tool can
understand

The AD tool Derivative code of the model!

What that we want to differentiate C++ code the AD tool can
understand

Roo*::translate()

‘Squash’ the graph into code

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

12

Automatic Differentiation in RooFit
Interlude: JSON to C++?

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Model translated to C++
code

TranslateModel.so

 TranslateModel.h

An independent
translation moduleJSON model configuration

Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

13

Out of RooFit, POC

In RooFit

In RooFit

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

14

Out of RooFit, POC

In RooFit

In RooFit

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Results
The POC HistFactory Model

15

An example histogram fitting model with 2 bins and 2 channels, with 3 samples per
channel. Based on the hf_001 example.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

https://root.cern/doc/master/hf001__example_8C.html

16

~5.5x speedup

Tested on ROOT v6.26.

Results
The POC HistFactory Model

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

17

Out of RooFit, POC

In RooFit

In RooFit

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

18

Results
The Real RooFit Example

18x Faster!

Tested on ROOT master as of May 2023.
*Excludes the seed generation time, more info - look here
Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

#

19

Results
The Real RooFit Example

18x Faster!

Tested on ROOT master as of May 2023.
*Excludes the seed generation time, more info - look here

RooFit has clear advantages over
“hand-writing” models, but can be

pushed more with AD!

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

#

Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

20

Out of RooFit, POC

In RooFit

In RooFit

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

21

Results
WIP: ATLAS HistFactory Benchmark

*Excludes the seed generation time, more info - look here

No. Of Channels RooFit Numerical-Diff Code-Squashing AD

FItting Time (s)*

1

5

10

20

0.03

1.19

2.22

7.38

0.01

0.26

0.36

1.17

AD
Speedup

2x

3.5x

5.2x

5.3x

Link to paper: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

#
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

22

Results
WIP: ATLAS HistFactory Benchmark

* For a non optimized channel in the benchmark, For a partly optimized one, the time taken is < 1 sec

JIT Time in ROOT (s)* Compile Time (g++ 10, s) Compile Time (clang-13, s)

-O0

-O1

-O2

-O3

1.15~16 0.82

4.46~17 6.00

9.24~17 8.57

10.69~17 8.88

We are still investigating issues with
JIT-ing in ROOT and also working

on reducing these times.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

23

Results
WIP: ATLAS HistFactory Benchmark

* For a non optimized channel in the benchmark, For a partly optimized one, the time taken is < 1 sec

JIT Time in ROOT (s)* Compile Time (g++ 10, s) Compile Time (clang-13, s)

-O0

-O1

-O2

-O3

1.15~16 0.82

4.46~17 6.00

9.24~17 8.57

10.69~17 8.88

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Now < 1 sec, potential for much more!

24

Current Status
What Can I Do Right Now?*

root[0] RooWorkspace myWS;

root[1] myWS.factory("sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])");

root[2] myWS.factory("prod::sigma_scaled(sigma[3.0, 0.01, 10], 1.5)");

root[3] myWS.factory("Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_scaled)");

root[4] RooAbsReal &x = *myWS.var("x");

root[5] RooAbsPdf &pdf = *myWS.pdf("gauss");

root[6] RooArgSet normSet{x};

*In ROOT master as of May 2023.
Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

25

Current Status
What Can I Do Right Now?*

(double (*)(double *, const double *)) Function @0x7fcfbd2f6000

 at input_line_19:1:

double myGauss(double *params, double const *obs)

{

 const double sigma_scaled = params[2] * 1.5;

 const double mu_shifted = params[0] + params[1];

 const double gauss_Int_x = ADDetail::gaussianIntegral(-10, 10, mu_shifted, sigma_scaled);

 const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled);

 const double normGauss = gauss / gauss_Int_x;

 return normGauss;

}

root[6] RooFuncWrapper gaussFunc("myGauss", "myGauss", pdf, normSet);

root[7] gaussFunc.dumpCode();

*In ROOT master as of May 2023.
Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

26

Current Status
What Can I Do Right Now?*

(double (*)(double *, const double *)) Function @0x7fcfbd2f6000

 at input_line_19:1:

double myGauss(double *params, double const *obs)

{

 const double sigma_scaled = params[2] * 1.5;

 const double mu_shifted = params[0] + params[1];

 const double gauss_Int_x = ADDetail::gaussianIntegral(-10, 10, mu_shifted, sigma_scaled);

 const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled);

 const double normGauss = gauss / gauss_Int_x;

 return normGauss;

}

root[6] RooFuncWrapper gaussFunc("myGauss", "myGauss", pdf, normSet);

root[7] gaussFunc.dumpCode();

“sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])”

“prod::sigma_scaled(sigma[3.0, 0.01, 10], 1.5)”

“Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_scaled)”

*In ROOT master as of May 2023.
Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

27

Conclusion

This work presents an efficient way to translate complex models such that they can
be differentiated using AD. It demonstrates that AD can be used to effectively lower
the fitting time for non-trivial models.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

28

Conclusion

This work presents an efficient way to translate complex models such that they can
be differentiated using AD. It demonstrates that AD can be used to effectively lower
the fitting time for non-trivial models.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

29

Conclusion

This work presents an efficient way to translate complex models such that they can
be differentiated using AD. It demonstrates that AD can be used to effectively lower
the fitting time for non-trivial models.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

30

Future Work

● Continue efforts in supporting the ATLAS HistFactory benchmark in RooFit.

● Completely avoid the use of numerical gradients in fits using MINUIT.

● Extend support to cover other parts of RooFit.

● Optimize Clad generated derivatives and further explore how they can be
parallelized (OpenMP or CUDA).

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

31

Takeaways From a CS Person

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

31

Takeaways From a CS Person

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

an inexperienced :)

Ideal world! Amazing
performance and usability.

High usability but impacted
performance. Low Risk

Maybe a huge success for
some software but a big fail
for others…Low Risk

High performance, high
usability but High Risk.

Complete
Rewrite

Develop New
AD Tools

Don’t Change
ANYTHING

Use Existing AD Tools

31

Takeaways From a CS Person

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

an inexperienced :)

Complete
Rewrite

Ideal world! Amazing
performance and usability.

High usability but impacted
performance. Low Risk

Maybe a huge success for
some software but a big fail
for others…Low Risk

High performance, high
usability but High Risk.

Don’t Change
ANYTHING

Use Existing AD Tools

Develop New
AD Tools

31

Takeaways From a CS Person

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

an inexperienced :)

Complete
Rewrite

Ideal world! Amazing
performance and usability.

High usability but impacted
performance. Low Risk

Maybe a huge success for
some software but a big fail
for others…Low Risk

High performance, high
usability but High Risk.

Don’t Change
ANYTHING

Use Existing AD Tools

Develop New
AD Tools

- Likely to be most successful.

- New AD tools (or modifications to
current ones) -> encode domain
specific optimizations!

- Can’t avoid rewrites…

- MORE COLLABS WITH CS!!!!

The End!
Questions?

garima.singh@cern.ch

https://github.com/grimmmyshini

https://www.linkedin.com/in/garimasingh28/

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

mailto:garima.singh@cern.ch
https://github.com/grimmmyshini
https://www.linkedin.com/in/garimasingh28/

Backup
Model From Benchmarks

Plot for number of channels = 1

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Backup
Model From Benchmarks

RooRealVar c("c", "c", -0.5, -0.8, 0.2);

RooExponential expo("expo", "expo", x, c);

// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters

RooRealVar mean1("mean1", "mean of gaussians", 3, 0, 5);

RooRealVar sigma1("sigma1", "width of gaussians", 0.8, .01, 3.0);

RooRealVar mean2("mean2", "mean of gaussians", 6, 5, 10);

RooRealVar sigma2("sigma2", "width of gaussians", 1.0, .01, 3.0);

RooGaussian sig1("sig1", "Signal component 1", x, mean1, sigma1);

RooGaussian sig2("sig2", "Signal component 2", x, mean2, sigma2);

// Sum the signal components

RooRealVar sig1frac("sig1frac", "fraction of signal 1", 0.5, 0.0, 1.0);

RooAddPdf sig("sig", "g1+g2", {sig1, sig2}, {sig1frac});

// Sum the composite signal and background

RooRealVar sigfrac("sigfrac", "fraction of signal", 0.4, 0.0, 1.0);

RooAddPdf model("model"), "g1+g2+a", {sig, expo}, {sigfrac});

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Backup
Share of fitting time for 700 parameters

Minimization TimeSeeding Time

RooFit Num-Diff Code Squashing
Num-Diff

Code Squashing AD

Seeding uses numerical differentiation = Larger times for AD

130 ms

11700 ms 51762 ms

652 ms

723 ms 730 ms

Possible Fix? Use AD here too!

Seeding: initial parameter scale estimation to get the step size for the minimization.
Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Backup
How models are translated

NLL

 GAUSS
code +=
RooGaussian::Translate({});

code +=
RooNLLVar::Translate();

// Declare the code
gInterpreter->Declare(code.c_str());
// Get the derivatives of ‘code’
gInterpreter->ProcessLine("clad::gradient(code);");
// Use code_grad in wrappers that interface with
// the minimizer.

The parent node queries the
results from the child nodes.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Backup
Numerical error and convergence rates: EDM vs Iterations

RooFit Numerical-Diff
(Without offsetting)

AD Code-Squashing

Large number of parameters usually causes numerical issues[3] with minimizations, leading to
fluctuation in step sizes and eventually leading to longer or no convergence.

[3] :https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html#convergence-in-mboxmigrad-and-positivedefiniteness

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Backup
Why is RF faster in once benchmark but not the other?

[3] :https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html#convergence-in-mboxmigrad-and-positivedefiniteness

The granularity of the RooFit computation graph that represents a HistFactory model is too
high. It caches the result of relatively simple operations, so the caching logic is more
expensive than re-evaluating the model.

However, these results inspired us to do some optimizations in HistFactory, so by now
RooFit should be again on par with code squash num-diff or even better!

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Introduction
Source Code Transformation Based Automatic Differentiation

Automatic Differentiation (AD) is a set of techniques to evaluate the exact derivative of a
computer program.

● Faster than numerical differentiation - scales better for problems with large number of parameters.
● More accurate than numerical differentiation - fewer numerical errors!

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Introduction
What is Automatic Differentiation?

Simply put, it's a way for computers to differentiate computer programs. AD applies the chain
rule of differential calculus throughout the semantics of the original program.

x

y

z = x * y

f = z + y
x

y

f = z + y

z = x * y

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Introduction
Why AD over numerical differentiation?

1

● Calculates exact derivatives of programs, free from numerical errors.

● More performant for functions with high number of parameters.

Difficulty in choosing step size due to numerical error Comparison between Clad’s AD and numerical diff

ns
https://www.researchgate.net/publication/346917467_Automatic_Differentiation_in_ROOT

dim
https://commons.wikimedia.org/wiki/File:AbsoluteErrorNumericalDifferentiationExample.png

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Introduction
Source Code Transformation Based Automatic Differentiation

Automatic Differentiation (AD) is a set of techniques to evaluate the exact derivative of a
computer program.

Source code transformation based AD synthesizes
derivative code from the internal representation of the
target program.

Input code Derivative code

…101…
…110…
…101…
…110…

Object code

AD Tool Compiler

● Faster than numerical differentiation - scales better for problems with large number of parameters.
● More accurate than numerical differentiation - fewer numerical errors!

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Automatic Differentiation in RooFit
Anatomy of a Translate Function

void RooGaussian::translate(ADDetail::CodeSquashContext &ctx) const

{

// Build a call to the stateless gaussian.

std::string const& xName = ctx.getResult(&x.arg());

std::string const& muName = ctx.getResult(&mean.arg());

std::string const& sigName = ctx.getResult(&sigma.arg());

std::string const& ResName = "ADDetail::gauss(" + xName + ", " + muName + ", " + sigName + ")";

ctx.addResult(this, ResName);

}

Object to manage the code squashing and
derivative generation. Provides a bunch of
utility functions for code squashing.

A function to query the string representing
the result of the input RF variable.

Assigns the class a string that represents
its result in the squashed code.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

Motivation
Why AD in RooFit?

Usual RooFit is performant even with numerical-diff because of its complex caching logic.

However, even if this caching would be done at a very granular level, it has lots of overhead
from virtual calls and bookkeeping, which is why we expect AD to be superior.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit - Garima Singh | 3rd MODE AD Workshop, 25th July 2023

