
Making Likelihood Calculations Fast 
Using Automatic Differentiation in 

RooFit
Garima Singh (Princeton University), Jonas Rembser (CERN), 
Lorenzo Moneta (CERN), Vassil Vassilev (Princeton University)

compiler-research.org
This project was supported in part by the NSF (USA) Grant OAC-1931408 and NSF (USA) Cooperative Agreement OAC-1836650.

https://compiler-research.org/


Introduction 
Goal

Add automatic differentiation (AD) to RooFit, a statistical modelling library packed in ROOT. 
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Methods of Automatic Differentiation
The Two Techniques

1

Source Code Transformation AD Operator Overloading AD

● Synthesize derivative code from the input 
program automatically.

● Faster - allows for easier compiler 
optimization. 

● Eg. Tapenade, Enzyme, Clad

● Use a new data type and operator overloading 
to keep track of derivatives as the original 
program executes.

● Slower and requires hand writing annotations 
and changing data types.

● Eg. PyTorch/TensorFlow, CoDiPack, etc.

2
[1] : https://en.wikipedia.org/wiki/Automatic_differentiation

[1] [1] 
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An Efficient Method of Differentiation
Compiler-Based Source Transformation AD: Clad

1

Clad[1], a source code transformation AD tool, implemented as a plugin to the clang 
compiler. Clad inspects the internal compiler representation of the target function to 
generates its derivative. 

double absFunc(double x) {

 if (x < 0) return -x;

 else return x;

}

double absFunc_darg0(double x) {

   double _d_x = 1;

   if (x < 0) return -_d_x;

   else return _d_x;

}

clad::differentiate(absFunc)

● Proximity to compiler allows for more control over code generation.
● Support for a good subset of modern C++ constructs.

3
[1] : https://github.com/vgvassilev/clad
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An Efficient Method of Differentiation
Compiler-Based Source Transformation AD: Clad

1

[3] :https://github.com/root-project/cling

Clad also can be used within Cling[3], the C++ interpreter used with ROOT.

Binder Tutorial
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https://github.com/root-project/cling
https://mybinder.org/v2/gh/vgvassilev/clad/master?labpath=%2Fdemos%2FJupyter%2FIntro.ipynb


5

Motivation
Why AD?

Image ref:  Automatic Differentiation of Binned Likelihoods With Roofit and Clad - Garima Singh,Jonas Rembser, Lorenzo Moneta, Vassil Vassilev, ACAT 2022
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Automatic Differentiation in RooFit
Sounds easy… 

1

What we want to differentiate

6

Made up of various RooFit objects

Our AD tool of choice

A typical RooFit statistical model

Differentiable RooFit Models!

Actually, not so simple…

RooFit has an object oriented model which 
deliberately hides the differential properties of the 

nodes in favor of ease of use. 
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Automatic Differentiation in RooFit
Challenges

1

RooFit represents all mathematical formulae as RooFit objects which are then brought 
together into a compute graph. This compute graph makes up a model on which further 
data analysis is run. 

Gaussian Probability 
Distribution Function (pdf)

//Obj represents f(x) here
RooGaussian obj(x, mu, sigma);

Equivalent Code in C++ with RooFit

Programmers/users know this relationship. But how do 
we connect these two together when a connection is not 

obvious in code?
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Automatic Differentiation in RooFit
How Does it work?

What that we want to differentiate C++ code the AD tool can 
understand

Some way to expose differentiable 
properties of the graph as code.

C++ code the AD tool can 
understand

The AD tool Derivative code of the model!
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Automatic Differentiation in RooFit
How Does it work?

What that we want to differentiate C++ code the AD tool can 
understand

Define 2 Functions in RooFit

void RooGaussian::translate(...) override {

 result = "ADDetail::gauss(" +

                       _x->getResult() +

                       " ," + _mu->getResult() +

                       " ," + _sigma->getResult() + ")";

}

The “glue” function enabling graph squashing.

double ADDetail::gauss(double x, double mean, double sigma) {

 const double arg = x - mean;

 const double sig = sigma;

 return std::exp(-0.5 * arg * arg / (sig * sig));

}

Stateless function enabling differentiation of each class.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit  - Garima Singh | 3rd MODE AD Workshop, 25th July 2023



10

Automatic Differentiation in RooFit
How Does it work?

What that we want to differentiate C++ code the AD tool can 
understand

Define 2 Functions in RooFit

ADDetail::gauss(x, mu, sig)
The equivalent code generated

RooGaussian::evaluate()
The RooFit call to evaluate a gaussian

ADDetail::gauss(x, mu, sig) / ADDetail::gaussIntegral(...)

The equivalent code generated 
(given the class supports analytical integrals)

- Bookkeeping

& caching
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Automatic Differentiation in RooFit
The Big Picture

C++ code the AD tool can 
understand

The AD tool Derivative code of the model!

What that we want to differentiate C++ code the AD tool can 
understand

Roo*::translate()

‘Squash’ the graph into code 
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Automatic Differentiation in RooFit
Interlude: JSON to C++?
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Model translated to C++ 
code 

TranslateModel.so 

 TranslateModel.h

An independent 
translation moduleJSON model configuration



Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

13

Out of RooFit, POC

In RooFit

In RooFit
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Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

14

Out of RooFit, POC

In RooFit

In RooFit
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Results
The POC HistFactory Model

15

An example histogram fitting model with 2 bins and 2 channels, with 3 samples per 
channel. Based on the hf_001 example. 
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https://root.cern/doc/master/hf001__example_8C.html
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~5.5x speedup

Tested on ROOT v6.26.

Results
The POC HistFactory Model
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Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

17

Out of RooFit, POC

In RooFit

In RooFit
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Results
The Real RooFit Example

18x Faster!

Tested on ROOT master as of May 2023. 
*Excludes the seed generation time, more info - look here
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Results
The Real RooFit Example

18x Faster!

Tested on ROOT master as of May 2023. 
*Excludes the seed generation time, more info - look here

RooFit has clear advantages over 
“hand-writing” models, but can be 

pushed more with AD! 
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Results

● A HistFactory example (binned pdfs based on template histograms)

● A basic RooFit example with binned fit of analytical shapes

● A WIP ATLAS HistFactory Benchmark

20

Out of RooFit, POC

In RooFit

In RooFit
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Results
WIP: ATLAS HistFactory Benchmark

*Excludes the seed generation time, more info - look here

No. Of Channels RooFit Numerical-Diff Code-Squashing AD

FItting Time (s)*

1

5

10

20

0.03

1.19

2.22

7.38

0.01

0.26

0.36

1.17

AD
Speedup

2x

3.5x

5.2x

5.3x

Link to paper: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
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Results
WIP: ATLAS HistFactory Benchmark

* For a non optimized channel in the benchmark, For a partly optimized one, the time taken is < 1 sec

JIT Time in ROOT (s)* Compile Time (g++ 10, s) Compile Time (clang-13, s)

-O0

-O1

-O2

-O3

1.15~16 0.82

4.46~17 6.00

9.24~17 8.57

10.69~17 8.88

We are still investigating issues with 
JIT-ing in ROOT and also working 

on reducing these times.
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Results
WIP: ATLAS HistFactory Benchmark

* For a non optimized channel in the benchmark, For a partly optimized one, the time taken is < 1 sec

JIT Time in ROOT (s)* Compile Time (g++ 10, s) Compile Time (clang-13, s)

-O0

-O1

-O2

-O3

1.15~16 0.82

4.46~17 6.00

9.24~17 8.57

10.69~17 8.88
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Now < 1 sec, potential for much more!
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Current Status
What Can I Do Right Now?*

root[0] RooWorkspace myWS;

root[1] myWS.factory("sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])");

root[2] myWS.factory("prod::sigma_scaled(sigma[3.0, 0.01, 10], 1.5)");

root[3] myWS.factory("Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_scaled)");

root[4] RooAbsReal &x = *myWS.var("x");

root[5] RooAbsPdf &pdf = *myWS.pdf("gauss");

root[6] RooArgSet normSet{x};

*In ROOT master as of May 2023. 
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Current Status
What Can I Do Right Now?*

(double (*)(double *, const double *)) Function @0x7fcfbd2f6000

 at input_line_19:1:

double myGauss(double *params, double const *obs)

{

  const double sigma_scaled = params[2] * 1.5;

  const double mu_shifted = params[0] + params[1];

  const double gauss_Int_x = ADDetail::gaussianIntegral(-10, 10, mu_shifted, sigma_scaled);

  const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled);

  const double normGauss = gauss / gauss_Int_x;

  return normGauss;

}

root[6] RooFuncWrapper gaussFunc("myGauss", "myGauss", pdf, normSet);

root[7] gaussFunc.dumpCode();

*In ROOT master as of May 2023. 
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Current Status
What Can I Do Right Now?*

(double (*)(double *, const double *)) Function @0x7fcfbd2f6000

 at input_line_19:1:

double myGauss(double *params, double const *obs)

{

  const double sigma_scaled = params[2] * 1.5;

  const double mu_shifted = params[0] + params[1];

  const double gauss_Int_x = ADDetail::gaussianIntegral(-10, 10, mu_shifted, sigma_scaled);

  const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled);

  const double normGauss = gauss / gauss_Int_x;

  return normGauss;

}

root[6] RooFuncWrapper gaussFunc("myGauss", "myGauss", pdf, normSet);

root[7] gaussFunc.dumpCode();

“sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])”

“prod::sigma_scaled(sigma[3.0, 0.01, 10], 1.5)”

“Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_scaled)”

*In ROOT master as of May 2023. 
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Conclusion

This work presents an efficient way to translate complex models such that they can 
be differentiated using AD. It demonstrates that AD can be used to effectively lower 
the fitting time for non-trivial models. 
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Conclusion

This work presents an efficient way to translate complex models such that they can 
be differentiated using AD. It demonstrates that AD can be used to effectively lower 
the fitting time for non-trivial models. 
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Future Work

● Continue efforts in supporting the ATLAS HistFactory benchmark in RooFit. 

● Completely avoid the use of numerical gradients in fits using MINUIT. 

● Extend support to cover other parts of RooFit.

● Optimize Clad generated derivatives and further explore how they can be 
parallelized (OpenMP or CUDA). 
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Takeaways From a CS Person 
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Takeaways From a CS Person 
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an inexperienced :)

Ideal world! Amazing 
performance and usability.

High usability but impacted 
performance. Low Risk

Maybe a huge success for 
some software but a big fail 
for others…Low Risk

High performance, high 
usability but High Risk.

Complete 
Rewrite

Develop New 
AD Tools

Don’t Change 
ANYTHING

Use Existing AD Tools
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Takeaways From a CS Person 
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an inexperienced :)

Complete 
Rewrite

Ideal world! Amazing 
performance and usability.

High usability but impacted 
performance. Low Risk

Maybe a huge success for 
some software but a big fail 
for others…Low Risk

High performance, high 
usability but High Risk.

Don’t Change 
ANYTHING

Use Existing AD Tools

Develop New 
AD Tools

- Likely to be most successful.

- New AD tools (or modifications to 
current ones) -> encode domain 
specific optimizations! 

- Can’t avoid rewrites…

- MORE COLLABS WITH CS!!!!



The End!
Questions?

garima.singh@cern.ch

https://github.com/grimmmyshini

https://www.linkedin.com/in/garimasingh28/
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Backup
Model From Benchmarks

Plot for number of channels = 1
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Backup
Model From Benchmarks

RooRealVar c("c", "c", -0.5, -0.8, 0.2);

RooExponential expo("expo", "expo", x, c);

// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters

RooRealVar mean1("mean1", "mean of gaussians", 3, 0, 5);

RooRealVar sigma1("sigma1", "width of gaussians", 0.8, .01, 3.0);

RooRealVar mean2("mean2", "mean of gaussians", 6, 5, 10);

RooRealVar sigma2("sigma2", "width of gaussians", 1.0, .01, 3.0);

RooGaussian sig1("sig1", "Signal component 1", x, mean1, sigma1);

RooGaussian sig2("sig2", "Signal component 2", x, mean2, sigma2);

// Sum the signal components

RooRealVar sig1frac("sig1frac", "fraction of signal 1", 0.5, 0.0, 1.0);

RooAddPdf sig("sig", "g1+g2", {sig1, sig2}, {sig1frac});

// Sum the composite signal and background

RooRealVar sigfrac("sigfrac", "fraction of signal", 0.4, 0.0, 1.0);

RooAddPdf model("model"), "g1+g2+a", {sig, expo}, {sigfrac});
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Backup
Share of fitting time for 700 parameters 

Minimization TimeSeeding Time

RooFit Num-Diff Code Squashing 
Num-Diff

Code Squashing AD

Seeding uses numerical differentiation = Larger times for AD

130 ms

11700 ms 51762 ms

652 ms

723 ms 730 ms

Possible Fix? Use AD here too!

Seeding: initial  parameter scale estimation to get the step size for the minimization.
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Backup
How models are translated

NLL

 GAUSS
code += 
RooGaussian::Translate({});

code += 
RooNLLVar::Translate();

// Declare the code
gInterpreter->Declare(code.c_str());
// Get the derivatives of ‘code’
gInterpreter->ProcessLine("clad::gradient(code);");
// Use code_grad in wrappers that interface with 
// the minimizer.

The parent node queries the 
results from the child nodes.
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Backup
Numerical error and convergence rates: EDM vs Iterations

RooFit Numerical-Diff 
(Without offsetting)

AD Code-Squashing

Large number of parameters usually causes numerical issues[3] with minimizations, leading to 
fluctuation in step sizes and eventually leading to longer or no convergence.

[3] :https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html#convergence-in-mboxmigrad-and-positivedefiniteness
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Backup
Why is RF faster in once benchmark but not the other?

[3] :https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html#convergence-in-mboxmigrad-and-positivedefiniteness

The granularity of the RooFit computation graph that represents a HistFactory model is too 
high. It caches the result of relatively simple operations, so the caching logic is more 
expensive than re-evaluating the model.

However, these results inspired us to do some optimizations in HistFactory, so by now 
RooFit should be again on par with code squash num-diff or even better!
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Introduction
Source Code Transformation Based Automatic Differentiation

Automatic Differentiation (AD) is a set of techniques to evaluate the exact derivative of a 
computer program.

● Faster than numerical differentiation - scales better for problems with large number of parameters.
● More accurate than numerical differentiation - fewer numerical errors!
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Introduction
What is Automatic Differentiation?

Simply put, it's a way for computers to differentiate computer programs. AD applies the chain 
rule of differential calculus throughout the semantics of the original program.

x

y

z = x * y

f  = z + y
x

y

f  = z + y

z = x * y
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Introduction
Why AD over numerical differentiation?

1

● Calculates exact derivatives of programs, free from numerical errors. 

● More performant for functions with high number of parameters.

Difficulty in choosing step size due to numerical error Comparison between Clad’s AD and numerical diff

ns
https://www.researchgate.net/publication/346917467_Automatic_Differentiation_in_ROOT

dim
https://commons.wikimedia.org/wiki/File:AbsoluteErrorNumericalDifferentiationExample.png
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Introduction
Source Code Transformation Based Automatic Differentiation

Automatic Differentiation (AD) is a set of techniques to evaluate the exact derivative of a 
computer program.

Source code transformation based AD synthesizes 
derivative  code from the internal representation of the 
target program.

Input code Derivative code 

…101…
…110…
…101…
…110…

Object code 

AD Tool Compiler

● Faster than numerical differentiation - scales better for problems with large number of parameters.
● More accurate than numerical differentiation - fewer numerical errors!
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Automatic Differentiation in RooFit
Anatomy of a Translate Function

void RooGaussian::translate(ADDetail::CodeSquashContext &ctx) const

{

// Build a call to the stateless gaussian.

std::string const& xName = ctx.getResult(&x.arg());

std::string const& muName = ctx.getResult(&mean.arg());

std::string const& sigName = ctx.getResult(&sigma.arg());

std::string const& ResName = "ADDetail::gauss(" + xName + ", " + muName + ", " + sigName + ")";

ctx.addResult(this, ResName);

}

Object to manage the code squashing and 
derivative generation. Provides a bunch of 
utility functions for code squashing.

A function to query the string representing 
the result of the input RF variable.

Assigns the class a string that represents 
its result in the squashed code.

Making Likelihood Calculations Fast Using Automatic Differentiation in RooFit  - Garima Singh | 3rd MODE AD Workshop, 25th July 2023



Motivation
Why AD in RooFit?

Usual RooFit is performant even with numerical-diff because of its complex caching logic. 

However, even if this caching would be done at a very granular level, it has lots of overhead 
from virtual calls and bookkeeping, which is why we expect AD to be superior.
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