
Automatic Differentiation in
ROOT

Garima Singh (Princeton University), Jonas Rembser (CERN),
Lorenzo Moneta (CERN), Vassil Vassilev (Princeton University)

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 1

compiler-research.org

https://compiler-research.org/

ROOT
An Exabyte Data Analysis Framework

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 2

Scientific breakthrough such as the discovery of the big void in the Khufu’s Pyramid, the
gravitational waves and the Higgs boson heavily rely on the ROOT software package.

[1] Morishima, K., Kuno, M., Nishio, A. et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 386–390 (2017).
[2] B. P. Abbott, et al, Observation of Gravitational Waves from a Binary Black Hole Merger (2016)
[3] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC (2012)

[1] [2] [3]

Methods of Automatic Differentiation
The Two Techniques

1

Source Code Transformation AD Operator Overloading AD

● Synthesize derivative code from the
input program automatically.

● Faster - allows for easier compiler
optimization.

● Eg. Tapenade, Enzyme, Clad

● Use a new data type and operator
overloading to keep track of derivatives
as the original program executes.

● Slower and requires hand writing
annotations and changing data types.

● Eg. PyTorch/TensorFlow, CoDiPack, etc.
Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 3

[1] : https://en.wikipedia.org/wiki/Automatic_differentiation

[1] [1]

An Efficient Method of Differentiation
Compiler-Based Source Transformation AD: Clad

1

Clad[2], a source code transformation AD tool, implemented as a plugin to the clang
compiler. Clad inspects the internal compiler representation of the target function to
generates its derivative.

double absFunc(double x) {

 if (x < 0) return -x;

 else return x;

}

double absFunc_darg0(double x) {

 double _d_x = 1;

 if (x < 0) return -_d_x;

 else return _d_x;

}

clad::differentiate(absFunc)

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

[2] : https://github.com/vgvassilev/clad

● Proximity to compiler allows for more control over code generation.
● Support for a good subset of modern C++ constructs.

4

An Efficient Method of Differentiation
Compiler-Based Source Transformation AD: Clad

1

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

[3] :https://github.com/root-project/cling

Clad also can be used within Cling[3], the C++ interpreter used with ROOT.

Binder Tutorial

5

https://mybinder.org/v2/gh/vgvassilev/clad/master?labpath=%2Fdemos%2FJupyter%2FIntro.ipynb

AD in ROOT
ROOT’s Math and Statistical Libraries

As a first, we demonstrate
AD on one of the simpler

TFormula/TF1 class.

Then we demonstrate AD on
one of the high-level analysis

libraries - RooFit.

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

https://laconga.redclara.net/courses/modulo-datos/claseMD06/materialesMD06/ROOT_Introduction_CEVALE2VE_class_04_16_2
016.pdf

6

Automatic Differentiation for TFormula
What is TFormula?

TFormula models formulae in ROOT by connecting compiled and interpreted code offering
both performance and flexibility. It allows users to defined their formulae as strings which are
then JIT compiled to functions that are used to fit and model data distributions

TFormula f("f", "x*std::sin([0]) -

 y*std::cos([1])");

double p[2] = {TMath::Pi()/6, TMath::Pi()/3};

f.SetParameters(p);

f.Eval(1, 0);

The following function is JIT compiled by Cling:

double f(double *x, double *p) {

 return x[0]*std::sin(p[0]) -

 x[1]*std::cos(p[1]);

}

This call internally calls : f({1, 0}, p)

This code can easily be differentiated by clad!

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 7

Automatic Differentiation for TFormula
How to use AD in TFormula?

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

This will generate the gradient of
the function with respect to the
parameters `p`

8

It is also possible to compute AD
Hessians for TFormula through

HessianPar.

Automatic Differentiation for TFormula
Benchmarks

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

TFormula benchmarks of gradient generation time
from numerical differentiation and clad AD.

TF1 based benchmarks. TF1 is the TFormula
fitting interface for fitting histograms.

Clad can be used in TF1 through the “G” parameter to `Fit`.
h1->Fit(f1, "S G Q N");

9

14.4 x
9.9x
22.9x
12.4x

29.4x

26.4x

Automatic Differentiation in RooFit
Overview

1

● A more complex application of AD, different from TF because it is hard to extract the
code containing differentiable properties.

How do we make RooFit
more malleable to AD?

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

What that we want to differentiate

10

Automatic Differentiation in RooFit
Challenges

1

RooFit represents all mathematical formulae as RooFit objects which are then brought,
together into a compute graph. This compute graph makes up a model on which further
data analysis is run.

Gaussian Probability
Distribution Function (pdf)

//Obj represents f(x) here
RooGaussian obj(x, mu, sigma);

Equivalent Code in C++ with
RooFit

Programmers/users know this relationship. But how do
we connect these two together when a connection is not

obvious programmatically?

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 11

Automatic Differentiation in RooFit
Why AD?

1

● Good results, but still use numerical differentiation.
● Potential next step – use AD to compute the gradients.

● One goal - Make RooFit Faster. Results from a Higgs-combination fit:

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

ICHEP 2022 - Zeff Wolffs - https://agenda.infn.it/event/28874/contributions/169205/attachments/93887/129094/ICHEP_RooFit_ZefWolffs.pdf

Derivatives become bottleneck!

12

Automatic Differentiation in RooFit
Making RooFit classes differentiable

13

A way of having some context for AD is to introduce a function for each of the RooFit
nodes that would represent the underlying mathematical notation as code.

RooGaussian::evaluate()

double RooGaussian::gauss(double x, double mu, double sig)

{

 const double arg = x - mu;

 double out = std::exp(-0.5 * arg * arg / (sig * sig));

 return 1. / (std::sqrt(TMath::TwoPi()) * sigma) * out;

}

This would allow us to calculate the derivatives of a RooGaussian just by differentiating just
this function. However, how do we chain these individual functions to create code that
represents a given RooFit model?

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

– Caching &
Bookkeeping

+ Normalization

Automatic Differentiation in RooFit
Code Squashing : translating RooFit models

14

One way to do this is by defining a ‘translate’ function that returns an std::string
representing the underlying mathematical notation of the class as code. This string can
then be connected together to form a function.

NLL

 GAUSS code +=
RooGaussian::Translate({});

code +=
RooNLLVar::Translate();

The parent node queries the
results from the child nodes.

// Declare the code
gInterpreter->Declare(code.c_str());
// Get the derivatives of ‘code’
gInterpreter->ProcessLine("clad::gradient(code);");
// Use code_grad in wrappers that interface with
// the minimizer.

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

Automatic Differentiation in RooFit
Code Squashing : translating RooFit models

15

std::string

RooGaussian::translate(...) override {

 result = "RooGaussian::gauss(" +

 _x->getResult() +

 " ," + _mu->getResult() +

 " ," + _sigma->getResult() +

 ")";

 return "";

}

static double RooGaussian::gauss(double x, double mean,

double sigma) {

 const double arg = x - mean;

 const double sig = sigma;

 double out = std::exp(-0.5 * arg * arg / (sig * sig));

 return 1. / (std::sqrt(TMath::TwoPi()) * sigma) * out;

}

RooGaussian::gauss(x, mu, sig)

The equivalent code generated

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

Stateless function enabling differentiation of each class.

RooGaussian::evaluate()

The RooFit call to evaluate a
gaussian

The “glue” function enabling code squashing.

AD for binned likelihoods from HistFactory
A first application of AD for RooFit models

16Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

Example binned likelihood with
one channel: Higgs to 4 leptons

Many binned likelihoods follow a similar pattern:

 product of Poisson terms constraints

HistFactory is a higher-level tool to build such likelihoods in RooFit.

Good model class for showing AD in RooFit:

● many parameters
● rich computation graph
● few normalization integrals

Preliminary Results
Explicit Computation Graphs: An Example HistFactory Model

17Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

An example histogram fitting model with 2 bins and 2 channels, with 3 samples per
channel. Based on the hf_001 example.

https://root.cern/doc/master/hf001__example_8C.html

Preliminary Results
Explicit Computation Graphs: An Example HistFactory Model

18

double nll(double *in)

{

 double nomGammaB1 = 400;

 double nomGammaB2 = 100;

 double nominalLumi = 1;

 double constraint[3]{ExRooPoisson::poisson(nomGammaB1, (nomGammaB1 * in[0])),

 ExRooPoisson::poisson(nomGammaB2, (nomGammaB2 * in[1])),

 ExRooGaussian::gauss(in[2], nominalLumi, 0.100000)};

 double cnstSum = 0;

 double x[2]{1.25, 1.75};

 double sig[2]{20, 10};

 double binBoundaries1[3]{1, 1.5, 2};

 double bgk1[2]{100, 0};

 double binBoundaries2[3]{1, 1.5, 2};

 double histVals[2]{in[0], in[1]};

 double bgk2[2]{0, 100};

 double binBoundaries3[3]{1, 1.5, 2};

 double weights[2]{122.000000, 112.000000};

 for (int i = 0; i < 3; i++) {

 cnstSum -= std::log(constraint[i]);

 }

// cont…

// cont..

 double mu = 0;

 double temp;

 double nllSum = 0;

 unsigned int b1, b2, b3;

 for (int iB = 0; iB < 2; iB++) {

 b1 = ExRooHistFunc::getBin(binBoundaries1, x[iB]);

 b2 = ExRooHistFunc::getBin(binBoundaries2, x[iB]);

 b3 = ExRooHistFunc::getBin(binBoundaries3, x[iB]);

 mu = 0;

 mu += sig[b1] * (in[3] * in[2]);

 mu += (bgk1[b2] * histVals[iB]) * (in[2] * 1.000000);

 mu += (bgk2[b3] * histVals[iB]) * (in[2] * 1.000000);

 temp = std::log((mu));

 nllSum -= -(mu) + weights[iB] * temp;

 }

 return cnstSum + nllSum;

}

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

Constraints defined as calls to
their respective ‘evaluate’s.

Constraint sum.

Translated RooProducts.

NLL

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 19

~5.5x speedup

Tested on ROOT v6.26.

Automatic Differentiation in RooFit
Preliminary Results: HistFactory Minimization

Performance comparison AD vs numerical differentiation on hf_001 inspired example

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 20

Automatic Differentiation in RooFit
Next Steps

● Adding externally provided Hessian support to MINUIT.

● Investigating applicability of AD to the rest of the HistFactory workflow - such as
integrating AD based derivatives in profile likelihood calculations etc.

● Improving the external gradient interface in the RooFit minimizer wrappers

● Explore differentiating numerically computed integrals with AD.

Summary

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 21

● We present a compiler based AD tool - Clad, that is available as a plugin to the
C++ compiler Clang.

● We showcase the addition of AD to ROOT’s TFormula class and present relevant
results from the same.

● We demonstrate our current progress with adding AD to RooFit, more specifically
HistFactory. We present promising results for incorporating AD to a complex math
library such as RooFit.

● We also discuss future plans towards making RooFit more AD aware.

The End!
Questions?

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 22

garima.singh@cern.ch

https://github.com/grimmmyshini

https://www.linkedin.com/in/garimasingh28/

mailto:garima.singh@cern.ch
https://github.com/grimmmyshini
https://www.linkedin.com/in/garimasingh28/

Backup

Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022 23

