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Overview



A Simplified Overview 

An error approximation 
model 

For now, let’s assume taylor approximation

Function to 
be analysed

clad

Error 
estimation

Reference: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-74759-0_26#Equ9_26

Assuming the function can be decomposed into k computational steps of basic binary 
and unary operations 

Then the error in the function can be represented by

Scope for error 
correction methods

Precision tuning and SMT solvers etc.

Jacobians generated from clad are used 
to generate an approximate upper bound 

to the errors

Total error may then be represented as

However, linearization itself introduces 
linearization errors, making the final error 

term to look like this

In most cases, estimating the linearization 
error is not possible. The resulting error 

bounds are not rigorous 

May warrant use of Interval 
Arithmetic

or other rigorous estimation 
methods

https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-74759-0_26#Equ9_26


In a gist

  Absolute error may be represented as, 

Due to linearization, a more rigorous bound will be

We can get this via the reverse mode in clad

This we know already as it is machine dependent

A bit hard to estimate



Adjoint AD and Clad
The given computational graph represents the flow of adjoint AD method, which is implemented similarly in Clad. 

Image credit: https://en.wikipedia.org/wiki/Automatic_differentiation

At each point of derivative calculation, we can 
calculate the error of the subexpression. For 
example, at edge W4 →  W5, we want to 
calculate the error of the subexpression W4 
(say δ4) which approximately equals |W4| . |εM|

At last, we want to realise the equations given in 
the slides before to get the final error term



Adjoint AD and Clad

Image credit: https://en.wikipedia.org/wiki/Automatic_differentiation

A way of achieving this might be creating a 
one on one mapping of the AD Wengert’s list 
to the value of the expression at runtime. 

Or as the list already stores the expression at 
Wi , we might take a running sum and 
evaluate the list. 



Towards better error computation

A very obvious flaw of the elementary approach might be the effect of linearization errors on the final error 
term.

This problem is somewhat mitigated in the methods of error estimation discussed hereafter.

Existing Software that use this method (in conjunction with others)

ADAPT: Algorithmic Differentiation for Floating-Point Precision Tuning

Towards automatic significance analysis for approximate computing

https://github.com/llnl/adapt-fp
https://dl.acm.org/doi/10.1145/2854038.2854058


Interval estimates

Substitute each basic operation with an operation which takes in an interval [xl,xu], and produces the 
narrowest possible interval that contains the result of the corresponding interval operation with the same 
arguments.

As an example,

float sine(float x, int n){

     float denom, sinx, x1 = x;

     for(int i = 1; i<=n; i++){

         

         denom = 4 * i * i + 2 * i; 

         x1 = -x1 * n * n / denom; 

         sinx = sinx + x1;

      } 

      return sinx;

}



Interval estimates

template<float RL, float RU>

float sine_w_err(inv_float x, int n){

     inv_float denom, sinx, x1(x);

     for(int i = 1; i<=n; i++){

      

         int _i0 = 2 * i + 4 * i * i;

         // implicit cast to denom, default error value assigned to 

         // denom.rl, denom.ru  

         denom = _i0; 

         int _i1 = n * n;

         // following the IA operation rule,

         // S = {x1.rl * _i1.r1, x1.r1 * _i1.ru, x1.ru * _i1.r1, x1.ru * _i1.rl}

         //                  _i2.range := {min(S), max(S)} 

         inv_float _i2 = -x1 * _i1 

         

         // Similar to above, except here this operation is seen as

         //                  _i2.range * 1/denom.range

         // And implicitly,

         //                  denom.range := {1/denom.ru, 1/denom.rl}

         // then calculation similar to the above are performed   

         inv_float _i3 = _i2 / denom;

         // x1.range := _i2.range on reassignment

         x1 = _i2; 

         // For addition, 

         //         _i4.range := {sinx.ru + x1.ru, sinx.rl + x1.rl}

         inv_float _i4 = sinx + x1

 

         sinx = _i4;

      } 

      // Assign return variable's error range

      RU = sinx.ru;

      RL = sinx.rl;

      // Return scalar value

      return sinx.val;

}

Here, [RL, RU]  becomes the interval ( say   
) now contains both               a           and



Computing AF 

In a similar manner, we can extend IA to calculate AF as follows,

Where,

where pmin and nmax are the minimum positive floating-point 
number and the maximum negative floating-point number.

is summation in IA

is multiplication in IA



Interval computability and hurdles 

A major problem with IA based estimation methods is that the interval becomes larger as the 
computational steps grow, giving a large output interval and an overestimation of errors.

Difficulty in control flow and evaluation of relation statements also arise. For example, consider 
the condition a < [x] where [x] refers to the interval of x and a ∈ [x], the result of the 
comparison becomes ambiguous. Same is the case with comparing two overlapping intervals

For a division operation involving [x]where 0 ∈ [x], there are chances of a division by 
zero error in which case, the analysis may have to be terminated

To combat the last two issues, one may want to look into interval splitting as described 
here: https://www.math.kit.edu/ianm2/~kulisch/media/arjpkx.pdf

References:  Vassiliadis, V., Riehme, J., Deussen, J., Parasyris, K., Antonopoulos, C. D., Bellas, N., … Naumann, U. (2016). Towards automatic significance analysis for approximate computing; KUBOTA, Koichi & Iri, Masao. (1988). Fast Automatic Differentiation and 
Interval Estimates of rounding errors. Inf. Process. 14. 

https://www.math.kit.edu/ianm2/~kulisch/media/arjpkx.pdf


Other interesting methods

SMT solvers

Continuing the spirit of IA arithmetic, another interesting topic might be reasoning about an algorithms’ 
accuracy.
  

Satisfiability Modulo Theories (SMT) solvers essentially solve a set of constraints using symbolic execution. This 
constraint solving makes SMT solvers a great tool to judge programs’ accuracy and robustness and essentially 
prove that they work. A lot of work has been done to model Floating-Point Arithmetic (FPA) as a set of decision 
procedures that can then be verified by SMT solvers. 

SMT theory of Floating Point Arithmetic (FPA) comes in great help to emulate floating-point numbers as real 
numbers with infinite precision and generate code to reason these float numbers. Most SMT solvers use a 
bit-blasting technique wherein floating-point theory is reduced to bit-vectors, and the corresponding 
operations are modeled as circuits. Some famous SMT solvers that support FPA are Z3 and MathSAT.   

 

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-36742-7_7


SMT Solvers and Integration 

Integration of an SMT solver with Clad will roughly require the following steps:

● Code Annotation

In house code annotation will enable us to use existing SMT solvers. Generating code may also 
enable us to make use of libraries like symFPU on any other FPA supporting SMT solver directly 
as backend. These annotations maybe done by hand by the user, automatically or a mix of both.

 
● Setting preconditions and other dynamic parameters 

Interfacing an SMT solver with the application we create will require setting of parameters that 
will define the behavior of the FPA verification. This is the fairly trivial part to implement.

https://github.com/martin-cs/symfpu


Further reading 

 Computer-assisted verification of four interval arithmetic operators; Daisuke Ishii, Tomohito Yabu
● Verify IA libraries with code annotation + SMT backend

●  Have a GUI and support manual setting of preconditions/postconditions and splitting verification conditions

Paganelli, G., & Ahrendt, W. (2013). Verifying (In-)Stability in Floating-Point Programs by Increasing Precision, Using SMT 
Solving.

●  Checks if a calculation is stable by evaluating it at different precisions and checking if the resulting answers have a 
reasonable distance between them.

● Negates a weak precondition and solves it on two different precisions

W. Kahan, “How futile are mindless assessments of roundoff in floating-point computation?” 2006
●  Just an interesting read!

 

https://sci-hub.se/10.1016/j.cam.2020.112893
https://sci-hub.se/10.1109/SYNASC.2013.35
https://sci-hub.se/10.1109/SYNASC.2013.35
https://people.eecs.berkeley.edu/~wkahan/Mind1ess.pdf


Other interesting methods

Monte Carlo Arithmetic (MCA)

MCA’s error analysis is accomplished by repeatedly injecting small errors into an algorithm's data values and determining 

the relative effect on the results. These small errors are usually injected by random rounding and unrounding (random 

extension of precision) and serve as a purely unbiased method of fabricating random data. 

A quick gist of how MCA works is as follows;

Float computation →  injection of randomness  → Monte Carlo computation

Round-off analysis   → Statistical analysis



MCA Computation

To model errors on a Floating Point (FP) value x at virtual precision (random precision) t, Parker et al.  propose the following 

function:

Where ex   is the exponent of x and 𝜉 refers to a uniformly distributed random variable in the range [-0.5, 0.5]. Each floating 

point operation x*y can then be transformed into an MCA FP operation by employing one of the following models.

● Random Rounding: introduces errors in the result of the operation.

x*y → round(inexact(x*y))

● Precision Bounding: introduces errors in the respective inputs of the operation.

x*y → round(inexact(x)*inexact(y))

● Full MCA: introduces errors in the result and inputs of the operation.

x*y → round(inexact(inexact(x)*inexact(y)))

Reference:  Scott Parker. Monte carlo arithmetic: exploiting randomness in floating-point arithmetic. Technical Report CSD-970002, UCLA Computer Science Dept., 1997.

 



MCA Computation

Parker et al. also show that the significant digits of a MCA result at virtual precision t is given by the magnitude of the 

relative standard deviation of a distribution which can be estimated by a large number of Monte Carlo trials,

Where 𝜎 represents the standard deviation,  𝜇 represents the means and β represents the base of the numbers. 

Reference:  Scott Parker. Monte carlo arithmetic: exploiting randomness in floating-point arithmetic. Technical Report CSD-970002, UCLA Computer Science Dept., 1997.

These Monte Carlo trials can be easily parallelized and hence make this method a feasible way to obtain error estimates 
for a given function. Clad can also use the existing MCA library backends with modification to aid in the calculations as 
is done by Verificarlo

https://hal.archives-ouvertes.fr/hal-01192668v3/document


Further Reading

Verificarlo | Verificarlo: checking floating point accuracy through Monte Carlo Arithmetic
● Existing tool based on MCA to analyse and debug FPE

● Talks about MCA and Discrete Stochastic Arithmetic 
● Interesting case studies and comparisons with DSA

Stott Parker, D., Pierce, B., & Eggert, P. R. (2000). Monte Carlo arithmetic: how to gamble with floating 
point and win

● Interesting read on how MCA can help 

https://github.com/verificarlo/verificarlo
https://arxiv.org/pdf/1509.01347.pdf
https://sci-hub.se/10.1109/5992.852391
https://sci-hub.se/10.1109/5992.852391


Misc.



Goals

1. Cement my ideas and keep 
looking around for better ideas

2. As per the schedule, start 
working on the report on 
different error estimation 
methods

3. Familiarize myself with clad and 
all the clang functionalities it 
utilizes.


