
Project Roadmap

IRIS-HEP Fellowship • Floating point error estimation using Clad

Overview

A Simplified Overview

An error approximation
model

For now, let’s assume taylor approximation

Function to
be analysed

clad

Error
estimation

Reference: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-74759-0_26#Equ9_26

Assuming the function can be decomposed into k computational steps of basic binary
and unary operations

Then the error in the function can be represented by

Scope for error
correction methods

Precision tuning and SMT solvers etc.

Jacobians generated from clad are used
to generate an approximate upper bound

to the errors

Total error may then be represented as

However, linearization itself introduces
linearization errors, making the final error

term to look like this

In most cases, estimating the linearization
error is not possible. The resulting error

bounds are not rigorous

May warrant use of Interval
Arithmetic

or other rigorous estimation
methods

https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-74759-0_26#Equ9_26

In a gist

 Absolute error may be represented as,

Due to linearization, a more rigorous bound will be

We can get this via the reverse mode in clad

This we know already as it is machine dependent

A bit hard to estimate

Adjoint AD and Clad
The given computational graph represents the flow of adjoint AD method, which is implemented similarly in Clad.

Image credit: https://en.wikipedia.org/wiki/Automatic_differentiation

At each point of derivative calculation, we can
calculate the error of the subexpression. For
example, at edge W4 → W5, we want to
calculate the error of the subexpression W4
(say δ4) which approximately equals |W4| . |εM|

At last, we want to realise the equations given in
the slides before to get the final error term

Adjoint AD and Clad

Image credit: https://en.wikipedia.org/wiki/Automatic_differentiation

A way of achieving this might be creating a
one on one mapping of the AD Wengert’s list
to the value of the expression at runtime.

Or as the list already stores the expression at
Wi , we might take a running sum and
evaluate the list.

Towards better error computation

A very obvious flaw of the elementary approach might be the effect of linearization errors on the final error
term.

This problem is somewhat mitigated in the methods of error estimation discussed hereafter.

Existing Software that use this method (in conjunction with others)

ADAPT: Algorithmic Differentiation for Floating-Point Precision Tuning

Towards automatic significance analysis for approximate computing

https://github.com/llnl/adapt-fp
https://dl.acm.org/doi/10.1145/2854038.2854058

Interval estimates

Substitute each basic operation with an operation which takes in an interval [xl,xu], and produces the
narrowest possible interval that contains the result of the corresponding interval operation with the same
arguments.

As an example,

float sine(float x, int n){

 float denom, sinx, x1 = x;

 for(int i = 1; i<=n; i++){

 denom = 4 * i * i + 2 * i;

 x1 = -x1 * n * n / denom;

 sinx = sinx + x1;

 }

 return sinx;

}

Interval estimates

template<float RL, float RU>

float sine_w_err(inv_float x, int n){

 inv_float denom, sinx, x1(x);

 for(int i = 1; i<=n; i++){

 int _i0 = 2 * i + 4 * i * i;

 // implicit cast to denom, default error value assigned to

 // denom.rl, denom.ru

 denom = _i0;

 int _i1 = n * n;

 // following the IA operation rule,

 // S = {x1.rl * _i1.r1, x1.r1 * _i1.ru, x1.ru * _i1.r1, x1.ru * _i1.rl}

 // _i2.range := {min(S), max(S)}

 inv_float _i2 = -x1 * _i1

 // Similar to above, except here this operation is seen as

 // _i2.range * 1/denom.range

 // And implicitly,

 // denom.range := {1/denom.ru, 1/denom.rl}

 // then calculation similar to the above are performed

 inv_float _i3 = _i2 / denom;

 // x1.range := _i2.range on reassignment

 x1 = _i2;

 // For addition,

 // _i4.range := {sinx.ru + x1.ru, sinx.rl + x1.rl}

 inv_float _i4 = sinx + x1

 sinx = _i4;

 }

 // Assign return variable's error range

 RU = sinx.ru;

 RL = sinx.rl;

 // Return scalar value

 return sinx.val;

}

Here, [RL, RU] becomes the interval (say
) now contains both a and

Computing AF

In a similar manner, we can extend IA to calculate AF as follows,

Where,

where pmin and nmax are the minimum positive floating-point
number and the maximum negative floating-point number.

is summation in IA

is multiplication in IA

Interval computability and hurdles

A major problem with IA based estimation methods is that the interval becomes larger as the
computational steps grow, giving a large output interval and an overestimation of errors.

Difficulty in control flow and evaluation of relation statements also arise. For example, consider
the condition a < [x] where [x] refers to the interval of x and a ∈ [x], the result of the
comparison becomes ambiguous. Same is the case with comparing two overlapping intervals

For a division operation involving [x]where 0 ∈ [x], there are chances of a division by
zero error in which case, the analysis may have to be terminated

To combat the last two issues, one may want to look into interval splitting as described
here: https://www.math.kit.edu/ianm2/~kulisch/media/arjpkx.pdf

References: Vassiliadis, V., Riehme, J., Deussen, J., Parasyris, K., Antonopoulos, C. D., Bellas, N., … Naumann, U. (2016). Towards automatic significance analysis for approximate computing; KUBOTA, Koichi & Iri, Masao. (1988). Fast Automatic Differentiation and
Interval Estimates of rounding errors. Inf. Process. 14.

https://www.math.kit.edu/ianm2/~kulisch/media/arjpkx.pdf

Other interesting methods

SMT solvers

Continuing the spirit of IA arithmetic, another interesting topic might be reasoning about an algorithms’
accuracy.

Satisfiability Modulo Theories (SMT) solvers essentially solve a set of constraints using symbolic execution. This
constraint solving makes SMT solvers a great tool to judge programs’ accuracy and robustness and essentially
prove that they work. A lot of work has been done to model Floating-Point Arithmetic (FPA) as a set of decision
procedures that can then be verified by SMT solvers.

SMT theory of Floating Point Arithmetic (FPA) comes in great help to emulate floating-point numbers as real
numbers with infinite precision and generate code to reason these float numbers. Most SMT solvers use a
bit-blasting technique wherein floating-point theory is reduced to bit-vectors, and the corresponding
operations are modeled as circuits. Some famous SMT solvers that support FPA are Z3 and MathSAT.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-36742-7_7

SMT Solvers and Integration

Integration of an SMT solver with Clad will roughly require the following steps:

● Code Annotation

In house code annotation will enable us to use existing SMT solvers. Generating code may also
enable us to make use of libraries like symFPU on any other FPA supporting SMT solver directly
as backend. These annotations maybe done by hand by the user, automatically or a mix of both.

● Setting preconditions and other dynamic parameters

Interfacing an SMT solver with the application we create will require setting of parameters that
will define the behavior of the FPA verification. This is the fairly trivial part to implement.

https://github.com/martin-cs/symfpu

Further reading

 Computer-assisted verification of four interval arithmetic operators; Daisuke Ishii, Tomohito Yabu
● Verify IA libraries with code annotation + SMT backend

● Have a GUI and support manual setting of preconditions/postconditions and splitting verification conditions

Paganelli, G., & Ahrendt, W. (2013). Verifying (In-)Stability in Floating-Point Programs by Increasing Precision, Using SMT
Solving.

● Checks if a calculation is stable by evaluating it at different precisions and checking if the resulting answers have a
reasonable distance between them.

● Negates a weak precondition and solves it on two different precisions

W. Kahan, “How futile are mindless assessments of roundoff in floating-point computation?” 2006
● Just an interesting read!

https://sci-hub.se/10.1016/j.cam.2020.112893
https://sci-hub.se/10.1109/SYNASC.2013.35
https://sci-hub.se/10.1109/SYNASC.2013.35
https://people.eecs.berkeley.edu/~wkahan/Mind1ess.pdf

Other interesting methods

Monte Carlo Arithmetic (MCA)

MCA’s error analysis is accomplished by repeatedly injecting small errors into an algorithm's data values and determining

the relative effect on the results. These small errors are usually injected by random rounding and unrounding (random

extension of precision) and serve as a purely unbiased method of fabricating random data.

A quick gist of how MCA works is as follows;

Float computation → injection of randomness → Monte Carlo computation

Round-off analysis → Statistical analysis

MCA Computation

To model errors on a Floating Point (FP) value x at virtual precision (random precision) t, Parker et al. propose the following

function:

Where ex is the exponent of x and 𝜉 refers to a uniformly distributed random variable in the range [-0.5, 0.5]. Each floating

point operation x*y can then be transformed into an MCA FP operation by employing one of the following models.

● Random Rounding: introduces errors in the result of the operation.

x*y → round(inexact(x*y))

● Precision Bounding: introduces errors in the respective inputs of the operation.

x*y → round(inexact(x)*inexact(y))

● Full MCA: introduces errors in the result and inputs of the operation.

x*y → round(inexact(inexact(x)*inexact(y)))

Reference: Scott Parker. Monte carlo arithmetic: exploiting randomness in floating-point arithmetic. Technical Report CSD-970002, UCLA Computer Science Dept., 1997.

MCA Computation

Parker et al. also show that the significant digits of a MCA result at virtual precision t is given by the magnitude of the

relative standard deviation of a distribution which can be estimated by a large number of Monte Carlo trials,

Where 𝜎 represents the standard deviation, 𝜇 represents the means and β represents the base of the numbers.

Reference: Scott Parker. Monte carlo arithmetic: exploiting randomness in floating-point arithmetic. Technical Report CSD-970002, UCLA Computer Science Dept., 1997.

These Monte Carlo trials can be easily parallelized and hence make this method a feasible way to obtain error estimates
for a given function. Clad can also use the existing MCA library backends with modification to aid in the calculations as
is done by Verificarlo

https://hal.archives-ouvertes.fr/hal-01192668v3/document

Further Reading

Verificarlo | Verificarlo: checking floating point accuracy through Monte Carlo Arithmetic
● Existing tool based on MCA to analyse and debug FPE

● Talks about MCA and Discrete Stochastic Arithmetic
● Interesting case studies and comparisons with DSA

Stott Parker, D., Pierce, B., & Eggert, P. R. (2000). Monte Carlo arithmetic: how to gamble with floating
point and win

● Interesting read on how MCA can help

https://github.com/verificarlo/verificarlo
https://arxiv.org/pdf/1509.01347.pdf
https://sci-hub.se/10.1109/5992.852391
https://sci-hub.se/10.1109/5992.852391

Misc.

Goals

1. Cement my ideas and keep
looking around for better ideas

2. As per the schedule, start
working on the report on
different error estimation
methods

3. Familiarize myself with clad and
all the clang functionalities it
utilizes.

