
Bringing Automatic
Differentiation to CUDA with

Compiler-Based Source
Transformations

Why, what and how?

1

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange
Compiler Research Group, Princeton University

Background
● What is Automatic Differentiation?

Automatic Differentiation (AD) is a technique used by computers to compute the gradient (or
derivative) of a function by breaking it down into elementary steps or operations.

Reverse-mode AD is automatically computes the derivative of a function, but performs the
operations in reverse order while also swapping the left and right hand-side expressions of these
operations. This type of AD is used when we’re interested in the derivative with respect to many
inputs of the function.

● What is Reverse-mode AD?

● What is Clad?

Clad is a clang plugin for automatic differentiation that performs source-to-source transformation
and produces a function capable of computing the derivatives of a given function at compile time.

2
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Background

● What is CUDA?

● How can non-global device functions be
accessed?

A CUDA kernel is a global void function
run by CUDA on a GPU. They are
launched by the host (CPU) with a
certain grid configuration.

● What is a CUDA kernel?

CUDA is an API used to program NVIDIA GPUs.

Device (GPU) functions can only be
called inside kernels. They cannot be
launched similarly to kernels in order
to create a new grid configuration for
them, rather, each thread running
the kernel will execute the device
function as many times as it’s called.

3
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Motivation
● Why do we need gradients?

○ Physics equations and simulations

○ Optimization problems (i.e. Finance or backpropagation in ML)

● Why do we need Automatic Differentiation?

○ Differentiate code that is more complex than just the basic math functions

automatically

● Why do we need gradients in GPUs?

○ Faster execution

○ Cheaper and more energy efficient

○ Not tailored to specific applications

○ Compatible with C/C++
4

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Great for offloading
computation and enabling

hybrid CPU/GPU applications

Case study - Tensor contraction

5

__global__ void tensorContraction3D(float* C, const float* A, const float* B, const

size_type* A_dim, const size_type* B_dim, const int contractDimA, const int

contractDimB) {

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 // Each thread computes one element of the output tensor

 int totalElements =

 A_dim[(contractDimA + 1) % 3] * A_dim[(contractDimA + 2) % 3] *

 B_dim[(contractDimB + 1) % 3] * B_dim[(contractDimB + 2) % 3];

 if (idx < totalElements) {

size_type A_start, B_start, A_step, B_step;

size_type A_a, A_b, A_c, B_d, B_e, B_f;

computeStartStep(A_start, A_step, B_start, B_step, idx, A_dim, B_dim,

contractDimA, contractDimB);

float sum = 0.0f;

// A_dim[contractDimA] == B_dim[contractDimB]

for (int i = 0; i < A_dim[contractDimA]; i++)

 sum += A[A_start + (i * A_step)] * B[B_start + (i * B_step)];

C[idx] = sum;

 }

}

Tensor derivatives are used for
backpropagation in ML

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Case study - Black-Scholes model

"The Greeks" measure the sensitivity of the
value of a derivative product or a financial
portfolio to changes in parameter values.
They are partial derivatives of the price with
respect to the parameter values.

6

__device__ inline void BlackScholesBodyGPU(float& CallResult, float&

PutResult, /*Stock Price*/ float S, /*Option strike*/ float X,

/*Option years*/float T,/*Riskless rate*/ float R, /*Volatility

rate*/float V) {

 float sqrtT, expRT;

 float d1, d2, CNDD1, CNDD2;

 sqrtT = __fdividef(1.0F, rsqrtf(T));

 d1 = __fdividef(__logf(S / X) + (R + 0.5f * V * V) * T, V * sqrtT);

 d2 = d1 - V * sqrtT;

 CNDD1 = cndGPU(d1);

 CNDD2 = cndGPU(d2);

 // Calculate Call and Put simultaneously

 expRT = __expf(-R * T);

 CallResult = S * CNDD1 - X * expRT * CNDD2;

 PutResult = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1);

}

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Challenges in implementation

GPU architecture and its interaction with the CPU introduce new problems that

need to be addressed:

● Memory hierarchy of GPU (global, shared and local memories)

● Parallel execution of computations leading to race conditions

● Communication between CPU and GPU only achieved through CUDA’s API

7
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Let’s dive a bit deeper . . .

8
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Handle write-race conditions
When two or more threads read from the same memory address, when computing
the reverse mode of the kernel these threads attempt to write to the same memory
address. To ensure that no write-race condition occurs, the operations on this
memory address are made atomic:
__global__ void add_kernel(int *out, int val) {

int index = threadIdx.x + blockIdx.x * blockDim.x;
out[index] += val;

}
// auto grad_object = clad::gradient(add_kernel, "out, val");
void add_kernel_grad(int *out, int val, int *_d_out, int *_d_val) {

...
int _r_d0 = _d_out[index0];

 _d_val += _r_d0;
}

atomicAdd(&_d_val, _r_d0);

9
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Where should we use atomic operations?

10

● Does a write-race condition occur in the assignment of every parameter that is a pointer
to a memory address?
○ No! A write race condition can only occur on a memory address where two or

more threads have access to. In our cases so far, this translates into pointers to a
global memory address

● How do we know if a parameter resides in global memory?
○ Global memory is allocated only through the use of cudaMalloc(), which is called

by the CPU

cudaMalloc(&device_in, 10 * sizeof(double));

cudaMalloc(&device_out, 10 * sizeof(double));

. . .

kernel<<< /* #blocks */ 1, /* #threads per block*/ 10 >>>(device_out, device_in);

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Device vs Global call arguments

11

● Every kernel parameter that is a pointer is global
● Device functions are only called inside kernels
● Not all device parameters are necessarily global

Keep a record of global args
passed to device function
gradients (pullbacks) in the
differentiation request.
This works recursively for
nested device functions as
well.

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Device vs Global call arguments

12

void kernel_grad_0_2(double *out, double *in, double
val, double *_d_out, double *_d_val) {

. . .
 device_fn_2_pullback(in, val, _r_d0, &_r0);

. . .
}

void kernel_grad_0_2(double *out, double *in, double
*val, double *_d_out, double *_d_val) {

. . .
 device_fn_2_pullback(in, val, _r_d0, _d_val);

. . .
}

local to each thread

void kernel_grad_0_2(double *out, double *in, double
*val, double *_d_out, double *_d_in, double *_d_val)
{

. . .
 device_fn_2_pullback(in, val, _d_in, _d_val);

. . .
}

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Unique device gradients

13

auto grad_object = clad::gradient(kernel, “out, in”);
auto grad_object = clad::gradient(kernel, “out, in, val”);

__attribute__((device)) void device_fn_pullback(double *in,
double *val, double _d_y, double *_d_in, double *_d_val) {

unsigned int _t1 = blockIdx.x;
unsigned int _t0 = blockDim.x;
int _d_index = 0;
int index0 = threadIdx.x + _t1 * _t0;
{

atomicAdd(&_d_in[index0],_d_y);
*_d_val += _d_y;

}
}

__attribute__((device)) void device_fn_pullback(double *in,
double *val, double _d_y, double *_d_in, double *_d_val) {

unsigned int _t1 = blockIdx.x;
unsigned int _t0 = blockDim.x;
int _d_index = 0;
int index0 = threadIdx.x + _t1 * _t0;
{

atomicAdd(&_d_in[index0], _d_y);
atomicAdd(_d_val, _d_y);

}

}

Redefinition:
the second pullback
function wouldn’t be
created

Solution: append globals call args to the
device pullback name
1) __attribute__((device)) void

device_fn_pullback_0_1_3(double *in,
double *val, double _d_y, double
*_d_in, double *_d_val)

2) __attribute__((device)) void
device_fn_pullback_0_1_3_4(double *in,

double *val, double _d_y, double
*_d_in, double *_d_val)

1.

2.

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

CPU and GPU interaction - Deriving a CPU
function with CUDA calls

14

CPU variable

When deriving a CPU function, we need to
make sure that every parameter passed
to the kernel pullback is allocated and
set in the GPU

void launch_kernel_grad_0_1(int *out, int *in, const int N, int
*_d_out, int *_d_in) {

int _d_N = 0;
kernel<<<1, 5>>>(out, in, N);
{

 int _r0 = 0;
 kernel_pullback<<<1, 5>>>(out, in, N, _d_out,

 _d_in, &_r0);
 _d_N += _r0;

}
}

CPU variable

void launch_kernel_grad_0_1(int *out, int *in, const int N, int *_d_out, int *_d_in) {
int _d_N = 0;
kernel<<<1, 5>>>(out, in, N);

 int _r0 = 0;
int *_r1 = nullptr;

 cudaMalloc(&_r1, 4);
 cudaMemset(_r1, 0, 4);

kernel_pullback<<<1, 5>>>(out, in, N, _d_out, _d_in, _r1);
cudaMemcpy(&_r0, _r1, 4, cudaMemcpyDeviceToHost);

 cudaFree(_r1);
 _d_N += _r0;
}

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

void fn_grad(double *out, double *in, double *_d_out,
double *_d_in) {

. . .
cudaMalloc(&_d_in_dev, 10 * sizeof(double));
cudaMemset(_d_in_dev, 0, 10 * sizeof(double));
cudaMalloc(&in_dev, 10 * sizeof(double));
. . .
free(out_host);
free(_d_out_host);
cudaFree(out);
cudaFree(_d_out);
cudaFree(in_dev);
cudaFree(_d_in_dev);

}

Gradient correctness: Malloc and Free

15

double fn(double *out, double *in) {
 double *in_dev = nullptr;
 cudaMalloc(&in_dev, 10 * sizeof(double));
 cudaMemcpy(in_dev, in, 10 * sizeof(double),
cudaMemcpyHostToDevice);
 kernel_call<<<1, 10>>>(out, in_dev);
 double *out_host = (double *)malloc(10 *
sizeof(double));
 cudaMemcpy(out_host, out, 10 * sizeof(double),
cudaMemcpyDeviceToHost);
 . . .
 free(out_host);
 cudaFree(out);
 cudaFree(in_dev);
 return res;
}

auto grad_object = clad::gradient(fn, “out, in”);

When deriving a memory allocation or
deallocation expression, we
allocate/deallocate the derivative as
well and set it if needed

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

void fn_grad(double *out, double *in, double *_d_out, double
*_d_in) {
 . . .
 cudaMemcpy(in_dev, in, 10 * sizeof(double),

cudaMemcpyHostToDevice);
 kernel_call<<<1, 10>>>(out, in_dev);
 . . .
 kernel_call_pullback<<<1, 10>>>(out, in_dev, _d_out,

_d_in_dev);
 unsigned long _r0 = 0UL;
 cudaMemcpyKind _r1 = static_cast<cudaMemcpyKind>(0U);
 clad::custom_derivatives::cudaMemcpy_pullback(in_dev, in,

10 * sizeof(double), cudaMemcpyHostToDevice,
_d_in_dev, _d_in, &_r0, &_r1);

 . . .
}

Gradient correctness: Memcpy

16

double fn(double *out, double *in) {
 . . .
 kernel_call<<<1, 10>>>(out, in_dev);
 double *out_host = (double *)malloc(10 * sizeof(double));
 cudaMemcpy(out_host, out, 10 * sizeof(double),
cudaMemcpyDeviceToHost);
 . . .
 return res;
}

auto grad_object = clad::gradient(fn, “out, in”);

In the reverse-mode AD, the order of cudaMemcpy calls and kernel launches is swapped.
Thus, we now have to reverse the source and destination addresses and the kind of the copy
call and transform the copy to a plus-assign operation.

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

What have we accomplished?
● Deriving CPU functions containing kernel invocations and typical CUDA host

functions without extra effort from the user to allocate and initialize GPU
variables

● Users can run both the original computations and their gradient with a SINGLE
call

17

void launchTensorContraction3D(float* C, const float* A, const float* B, const size_type D1, const size_type D2, const size_type D3,
const size_type D4, const size_type D5) {

 float *d_A = nullptr, *d_B = nullptr, *d_C = nullptr;

 // Allocate device memory and copy data from host to device

 // initialize other data

 . . .

 // Launch the kernel

 tensorContraction3D<<<1, 256>>>(d_C, d_A, d_B, d_A_dim, d_B_dim, /*contractDimA=*/2, /*contractDimB=*/0);

 // Copy the result from device to host

 cudaMemcpy(C, d_C, C_size, cudaMemcpyDeviceToHost);

 // Free device memory

 . . .

}

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Scaling up- LULESH

18

● What is LULESH?
○ LULESH is a simplified version of an unstructured

explicit shock hydrodynamics solver that models
the motion of materials relative to each other
when subject to forces. LULESH approximates
the hydrodynamics equations discretely by
partitioning the spatial problem domain into a
collection of volumetric elements defined by a
mesh.

● Why benchmark LULESH?
○ LULESH is representative of real physics

codebases
○ It’s widely used as an HPC benchmark

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Scaling up- LULESH

19

● Any modifications needed for correctness?
○ Preliminary benchmarks using

Enzyme’s version of LULESH: Refactor
kernels into device functions - no
kernel launch derivation support

○ With Clad:
■ Some conversions to const_cast
■ Redundant storing operations

are removed from the gradient
only for performance purposes

● What have we observed?
○ Correct derivatives
○ Room for performance improvement

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

*Benchmarks done on Enzyme’s version of LULESH,
but using Clad

Challenges and Future work
● Optimization:

○ Reduce GPU variables created as access to GPU memory is slow and the
memory is limited

○ Optimize storing operations
● Extend support:

○ Enable support of shared memory
○ Handle synchronization functions, like __syncthreads() and

cudaDeviceSynchronize()
○ Extend support of CUDA math and host functions
○ Extend benchmark and application support

20
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Outline
● Enabled CUDA support with appropriate atomic operations,

capable of detecting allocation patterns and retrieving correct
gradients

● Enabled AD for CUDA code (mostly) without requiring code
modification:
○ Black-Scholes from NVIDIA’s CUDA samples repository
○ Physics simulation codebases: RSBench and LULESH

● Conducted preliminary performance studies

21
Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations

Thank you!

22

5th MODE Workshop

