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Differentiation to CUDA with 

Compiler-Based Source 
Transformations

Why, what and how?
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Background
● What is Automatic Differentiation?

Automatic Differentiation (AD) is a technique used by computers to compute the gradient (or 
derivative) of a function by breaking it down into elementary steps or operations.

Reverse-mode AD is automatically computes the derivative of a function, but performs the 
operations in reverse order while also swapping the left and right hand-side expressions of these 
operations. This type of AD is used when we’re interested in the derivative with respect to many 
inputs of the function.

● What is Reverse-mode AD?

● What is Clad?

Clad is a clang plugin for automatic differentiation that performs source-to-source transformation 
and produces a function capable of computing the derivatives of a given function at compile time. 
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Background

● What is CUDA?

● How can non-global device functions be 
accessed?

A CUDA kernel is a global void function 
run by CUDA on a GPU. They are 
launched by the host (CPU) with a 
certain grid configuration.

● What is a CUDA kernel?

CUDA is an API used to program NVIDIA GPUs.

Device (GPU) functions can only be 
called inside kernels. They cannot be 
launched similarly to kernels in order 
to create a new grid configuration for 
them, rather, each thread running 
the kernel will execute the device 
function as many times as it’s called.
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Motivation
● Why do we need gradients?

○ Physics equations and simulations

○ Optimization problems (i.e. Finance or backpropagation in ML)

● Why do we need Automatic Differentiation?

○ Differentiate code that is more complex than just the basic math functions 

automatically

● Why do we need gradients in GPUs?

○ Faster execution

○ Cheaper and more energy efficient

○ Not tailored to specific applications

○ Compatible with C/C++
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Great for offloading 
computation and enabling 

hybrid CPU/GPU applications



Case study - Tensor contraction
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__global__ void tensorContraction3D(float* C, const float* A, const float* B, const 

size_type* A_dim, const size_type* B_dim, const int contractDimA, const int 

contractDimB) {

  int idx = blockIdx.x * blockDim.x + threadIdx.x;

  // Each thread computes one element of the output tensor

  int totalElements =

  A_dim[(contractDimA + 1) % 3] * A_dim[(contractDimA + 2) % 3] *

  B_dim[(contractDimB + 1) % 3] * B_dim[(contractDimB + 2) % 3];

  if (idx < totalElements) {

size_type A_start, B_start, A_step, B_step;

size_type A_a, A_b, A_c, B_d, B_e, B_f;

computeStartStep(A_start, A_step, B_start, B_step, idx, A_dim, B_dim, 

contractDimA, contractDimB);

float sum = 0.0f;

// A_dim[contractDimA] == B_dim[contractDimB]

for (int i = 0; i < A_dim[contractDimA]; i++)  

 sum += A[A_start + (i * A_step)] * B[B_start + (i * B_step)];

C[idx] = sum;

  }

}

Tensor derivatives are used for 
backpropagation in ML

Christina Koutsou, Dr. Vassil Vassilev, Dr. David Lange - Compiler Research Group, Princeton University Bringing Automatic Differentiation to CUDA with Compiler-Based Source Transformations



Case study - Black-Scholes model

"The Greeks" measure the sensitivity of the 
value of a derivative product or a financial 
portfolio to changes in parameter values. 
They are partial derivatives of the price with 
respect to the parameter values.
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__device__ inline void BlackScholesBodyGPU(float& CallResult, float& 

PutResult, /*Stock Price*/ float S, /*Option strike*/ float X, 

/*Option years*/float T,/*Riskless rate*/ float R, /*Volatility 

rate*/float V) {

  float sqrtT, expRT;

  float d1, d2, CNDD1, CNDD2;

  sqrtT = __fdividef(1.0F, rsqrtf(T));

  d1 = __fdividef(__logf(S / X) + (R + 0.5f * V * V) * T, V * sqrtT);

  d2 = d1 - V * sqrtT;

  CNDD1 = cndGPU(d1);

  CNDD2 = cndGPU(d2);

  // Calculate Call and Put simultaneously

  expRT = __expf(-R * T);

  CallResult = S * CNDD1 - X * expRT * CNDD2;

  PutResult = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1);

}
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Challenges in implementation

GPU architecture and its interaction with the CPU introduce new problems that 

need to be addressed:

● Memory hierarchy of GPU (global, shared and local memories)

● Parallel execution of computations leading to race conditions

● Communication between CPU and GPU only achieved through CUDA’s API
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Let’s dive a bit deeper . . .
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Handle write-race conditions
When two or more threads read from the same memory address, when computing 
the reverse mode of the kernel these threads attempt to write to the same memory 
address. To ensure that no write-race condition occurs, the operations on this 
memory address are made atomic:
__global__ void add_kernel(int *out, int val) {

int index = threadIdx.x + blockIdx.x * blockDim.x;
out[index] += val;

}
// auto grad_object = clad::gradient(add_kernel, "out, val");
void add_kernel_grad(int *out, int val, int *_d_out, int *_d_val) {

... 
int _r_d0 = _d_out[index0];

    _d_val += _r_d0;
}

atomicAdd(&_d_val, _r_d0);
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Where should we use atomic operations?
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● Does a write-race condition occur in the assignment of every parameter that is a pointer 
to a memory address?
○ No! A write race condition can only occur on a memory address where two or 

more threads have access to. In our cases so far, this translates into pointers to a 
global memory address

● How do we know if a parameter resides in global memory?
○ Global memory is allocated only through the use of cudaMalloc(), which is called 

by the CPU

cudaMalloc(&device_in, 10 * sizeof(double));

cudaMalloc(&device_out, 10 * sizeof(double));

. . .

kernel<<< /* #blocks */ 1, /* #threads per block*/ 10 >>>(device_out, device_in);
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Device vs Global call arguments
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● Every kernel parameter that is a pointer is global 
● Device functions are only called inside kernels
● Not all device parameters are necessarily global

Keep a record of global args 
passed to device function 
gradients (pullbacks) in the 
differentiation request. 
This works recursively for 
nested device functions as 
well.
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Device vs Global call arguments
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void kernel_grad_0_2(double *out, double *in, double 
val, double *_d_out, double *_d_val) {

. . .
   device_fn_2_pullback(in, val, _r_d0, &_r0);

. . .
}

void kernel_grad_0_2(double *out, double *in, double 
*val, double *_d_out, double *_d_val) {

. . .
   device_fn_2_pullback(in, val, _r_d0, _d_val);

. . . 
}

local to each thread

void kernel_grad_0_2(double *out, double *in, double 
*val, double *_d_out, double *_d_in, double *_d_val) 
{

. . .
   device_fn_2_pullback(in, val, _d_in, _d_val);

. . . 
}
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Unique device gradients
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auto grad_object = clad::gradient(kernel, “out, in”);
auto grad_object = clad::gradient(kernel, “out, in, val”);

__attribute__((device)) void device_fn_pullback(double *in, 
double *val, double _d_y, double *_d_in, double *_d_val) {

unsigned int _t1 = blockIdx.x;
unsigned int _t0 = blockDim.x;
int _d_index = 0;
int index0 = threadIdx.x + _t1 * _t0;
{

atomicAdd(&_d_in[index0],_d_y);
*_d_val += _d_y;

}
}

__attribute__((device)) void device_fn_pullback(double *in, 
double *val, double _d_y, double *_d_in, double *_d_val) {

unsigned int _t1 = blockIdx.x;
unsigned int _t0 = blockDim.x;
int _d_index = 0;
int index0 = threadIdx.x + _t1 * _t0;
{

atomicAdd(&_d_in[index0], _d_y);
atomicAdd(_d_val, _d_y);

}

}

Redefinition: 
the second pullback 
function wouldn’t be 
created

Solution: append globals call args to the 
device pullback name
1) __attribute__((device)) void 

device_fn_pullback_0_1_3(double *in, 
double *val, double _d_y, double 
*_d_in, double *_d_val)

2) __attribute__((device)) void 
device_fn_pullback_0_1_3_4( double *in, 

double *val, double _d_y, double 
*_d_in, double *_d_val)

1.

2.
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CPU and GPU interaction - Deriving a CPU 
function with CUDA calls
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CPU variable

When deriving a CPU function, we need to 
make sure that every parameter passed 
to the kernel pullback is allocated and 
set in the GPU

void launch_kernel_grad_0_1(int *out, int *in, const int N, int 
*_d_out, int *_d_in) {

int _d_N = 0;
kernel<<<1, 5>>>(out, in, N);
{

    int _r0 = 0;
  kernel_pullback<<<1, 5>>>(out, in, N, _d_out, 

 _d_in, &_r0);
    _d_N += _r0;

}
}

CPU variable

void launch_kernel_grad_0_1(int *out, int *in, const int N, int *_d_out, int *_d_in) {
int _d_N = 0;
kernel<<<1, 5>>>(out, in, N);

    int _r0 = 0;
int *_r1 = nullptr;

    cudaMalloc(&_r1, 4);
    cudaMemset(_r1, 0, 4);

kernel_pullback<<<1, 5>>>(out, in, N, _d_out, _d_in, _r1);
cudaMemcpy(&_r0, _r1, 4, cudaMemcpyDeviceToHost);

    cudaFree(_r1);
    _d_N += _r0;
}
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void fn_grad(double *out, double *in, double *_d_out, 
double *_d_in) {

. . .
cudaMalloc(&_d_in_dev, 10 * sizeof(double));
cudaMemset(_d_in_dev, 0, 10 * sizeof(double));
cudaMalloc(&in_dev, 10 * sizeof(double));
. . .
free(out_host);
free(_d_out_host);
cudaFree(out);
cudaFree(_d_out);
cudaFree(in_dev);
cudaFree(_d_in_dev);

}

Gradient correctness: Malloc and Free
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double fn(double *out, double *in) {
  double *in_dev = nullptr;
  cudaMalloc(&in_dev, 10 * sizeof(double));
  cudaMemcpy(in_dev, in, 10 * sizeof(double), 
cudaMemcpyHostToDevice);
  kernel_call<<<1, 10>>>(out, in_dev);
  double *out_host = (double *)malloc(10 * 
sizeof(double));
  cudaMemcpy(out_host, out, 10 * sizeof(double), 
cudaMemcpyDeviceToHost);
  . . .
  free(out_host);
  cudaFree(out);
  cudaFree(in_dev);
  return res;
}

auto grad_object = clad::gradient(fn, “out, in”);

When deriving a memory allocation or 
deallocation expression, we 
allocate/deallocate the derivative as 
well and set it if needed
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void fn_grad(double *out, double *in, double *_d_out, double 
*_d_in) {
  . . .
  cudaMemcpy(in_dev, in, 10 * sizeof(double), 

cudaMemcpyHostToDevice);
  kernel_call<<<1, 10>>>(out, in_dev);
  . . .
  kernel_call_pullback<<<1, 10>>>(out, in_dev, _d_out, 

_d_in_dev);
  unsigned long _r0 = 0UL;
  cudaMemcpyKind _r1 = static_cast<cudaMemcpyKind>(0U);
  clad::custom_derivatives::cudaMemcpy_pullback(in_dev, in, 

10 * sizeof(double), cudaMemcpyHostToDevice, 
_d_in_dev, _d_in, &_r0, &_r1);

  . . .
}

Gradient correctness: Memcpy
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double fn(double *out, double *in) {
  . . .
  kernel_call<<<1, 10>>>(out, in_dev);
  double *out_host = (double *)malloc(10 * sizeof(double));
  cudaMemcpy(out_host, out, 10 * sizeof(double), 
cudaMemcpyDeviceToHost);
  . . .
  return res;
}

auto grad_object = clad::gradient(fn, “out, in”);

In the reverse-mode AD, the order of cudaMemcpy calls and kernel launches is swapped. 
Thus, we now have to reverse the source and destination addresses and the kind of the copy 
call and transform the copy to a plus-assign operation.
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What have we accomplished?
● Deriving CPU functions containing kernel invocations and typical CUDA host 

functions without extra effort from the user to allocate and initialize GPU 
variables

● Users can run both the original computations and their gradient with a SINGLE 
call
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void launchTensorContraction3D(float* C, const float* A, const float* B, const size_type D1, const size_type D2, const size_type D3, 
const size_type D4, const size_type D5) {

  float *d_A = nullptr, *d_B = nullptr, *d_C = nullptr;

  // Allocate device memory and copy data from host to device

  // initialize other data

  . . .

  // Launch the kernel

  tensorContraction3D<<<1, 256>>>(d_C, d_A, d_B, d_A_dim, d_B_dim, /*contractDimA=*/2, /*contractDimB=*/0);

  // Copy the result from device to host

  cudaMemcpy(C, d_C, C_size, cudaMemcpyDeviceToHost);

  // Free device memory

  . . .

}
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Scaling up- LULESH
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● What is LULESH?
○ LULESH is a simplified version of an unstructured 

explicit shock hydrodynamics solver that models 
the motion of materials relative to each other 
when subject to forces. LULESH approximates 
the hydrodynamics equations discretely by 
partitioning the spatial problem domain into a 
collection of volumetric elements defined by a 
mesh.

● Why benchmark LULESH?
○ LULESH is representative of real physics 

codebases 
○ It’s widely used as an HPC benchmark
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Scaling up- LULESH
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● Any modifications needed for correctness?
○ Preliminary benchmarks using 

Enzyme’s version of LULESH: Refactor 
kernels into device functions - no 
kernel launch derivation support

○ With Clad: 
■ Some conversions to const_cast
■  Redundant storing operations 

are removed from the gradient 
only for performance purposes

● What have we observed?
○ Correct derivatives
○ Room for performance improvement
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*Benchmarks done on Enzyme’s version of LULESH, 
but using Clad



Challenges and Future work
● Optimization:

○ Reduce GPU variables created as access to GPU memory is slow and the 
memory is limited

○ Optimize storing operations
● Extend support:

○ Enable support of shared memory
○ Handle synchronization functions, like __syncthreads() and 

cudaDeviceSynchronize()
○ Extend support of CUDA math and host functions
○ Extend benchmark and application support
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Outline
● Enabled CUDA support with appropriate atomic operations, 

capable of detecting allocation patterns and retrieving correct 
gradients

● Enabled AD for CUDA code (mostly) without requiring code 
modification:
○ Black-Scholes from NVIDIA’s CUDA samples repository
○ Physics simulation codebases: RSBench and LULESH

● Conducted preliminary performance studies
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Thank you!
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