
Enhancing LLM Training Efficiency with Clad

Midterm Presentation

Rohan Timmaraju, July 2025
Compiler Research Group

Recap: The Goal

Enhancing LLM Training Efficiency with Clad | Recap: The Goal

The Challenge of LLM Training
• Large Language Models (LLMs) are computationally expensive to train.
• Python frameworks (PyTorch, TensorFlow) dominate but can have performance

overhead, especially in C++-centric HPC environments.
• Goal: Leverage C++ performance and compiler-level Automatic Differentiation (AD) for

more efficient LLM training.

Rohan Timmaraju, July 2025 3

Enhancing LLM Training Efficiency with Clad | Recap: The Goal

Our Approach: clad for Backpropagation
• Idea: Implement the LLM entirely in C++, then use Clad — a Clang plugin for source-to-

source AD — to automatically generate the gradient code (backpropagation) at compile
time.

• Hypothesis: A static, compile-time approach can enable deeper compiler optimizations
across the entire computation graph.

Rohan Timmaraju, July 2025 4

Midterm Progress & Achievements

Enhancing LLM Training Efficiency with Clad | Midterm Progress & Achievements

1. Functional C++ Tensor Operations/Inference
• cladtorch Library:
‣ Successfully developed a custom C++ tensor library from the ground up.
‣ Provides core tensor operations, neural network layers (Linear, LayerNorm, Softmax),

and loss functions.
‣ Designed specifically for optimal compatibility with Clad.

• GPT-2 Forward Pass:
‣ Implemented a full GPT-2 model (125M parameters) using cladtorch.
‣ The forward pass is functional and validates the library’s correctness.
‣ Achieves ~12 tokens/second for inference on a single CPU core (using optimized

BLAS kernels).

Rohan Timmaraju, July 2025 6

Enhancing LLM Training Efficiency with Clad | Midterm Progress & Achievements

2. End-to-End Differentiation
• This is the project’s core technical success.
• We can apply clad::gradient to the entire model’s loss function.

:/ The goal: Differentiate the whole loss function w.r.t model params
float gpt2_loss(const GPT2& model, const ITensor& input, const ITensor& targets) {
 FTensor probs = model.forward(input);
 return cross_entropy_loss(probs, targets);
}

:/ This now works!
auto grad_fn = clad::gradient(gpt2_loss, "model"); :/ Differentiate w.r.t. 'model'

• Clad successfully processes the entire, complex C++ codebase—including loops,
custom classes, and nested function calls—to generate the complete backward pass.

Rohan Timmaraju, July 2025 7

Enhancing LLM Training Efficiency with Clad | Midterm Progress & Achievements

From C++ to Gradients
Clad transforms human-written forward pass code into an efficient backward pass. This

required writing custom derivatives for cladtorch operations to guide the process.

Human-Written C++ Forward Pass

:/ Inside gpt2::LayerNorm
FTensor forward(const FTensor&
input) const {
 auto norm = input.norm();
 auto tmp = norm * weight;
 return tmp + bias;
}

Clad-Generated Backward Pass

void forward_pullback(
 const FTensor& input, FTensor _d_y,
 gpt2::LayerNorm* _d_this, FTensor* _d_input
) const {
 op_plus_pullback(&tmp, this:>bias,
_d_result, &_d_tmp, &_d_this:>bias);
 op_star_pullback(&norm, this:>weight,
_d_tmp, &_d_norm, &_d_this:>weight);
 norm_pullback(&input, _d_norm, _d_input);
}

Rohan Timmaraju, July 2025 8

Enhancing LLM Training Efficiency with Clad | Midterm Progress & Achievements

3. Initial Performance Benchmarks
• Our training loop is fully functional and already incorporates highly optimized BLAS

kernels (Apple Accelerate) for matrix multiplications.
• Results:
‣ With these optimizations, our cladtorch implementation is roughly on par with Andrej

Karpathy’s llm.c.
– This confirms the baseline efficiency is strong.

‣ It is currently 3-4x slower than a comparable PyTorch implementation.
– This suggests the remaining overhead is not in matmul, but likely in other

operations, memory access patterns, or parallelism.

Rohan Timmaraju, July 2025 9

Next Steps & Optimization

Enhancing LLM Training Efficiency with Clad | Next Steps & Optimization

Next Steps: Functional to Fast
The focus for the remainder of GSoC is clear: find and reduce overhead.

• 1. Deep Profiling to Find Bottlenecks:
‣ Since matmul is optimized, use profiling tools to find the next hotspots.
‣ Candidates: custom derivatives, memory allocation/copying, or temporary object

creation in the generated code.

• 2. Parallelize with OpenMP:
‣ PyTorch’s speed heavily relies on parallelism, so we should do the same for a fair

comparison.

Rohan Timmaraju, July 2025 11

Enhancing LLM Training Efficiency with Clad | Next Steps & Optimization

Next Steps (pt. 2)
• 3. Optimize Memory Patterns:
‣ Investigate and reduce intermediate tensor allocations and copies. Minimizing

temporary objects in tight loops is critical for C++ performance.

• 4. Benchmarking & Documentation:
‣ Conduct final, formal benchmarks after optimization.
‣ Finalize the cladtorch library, documentation, and project report.

Rohan Timmaraju, July 2025 12

Summary

Enhancing LLM Training Efficiency with Clad | Summary

Midterm Summary & Impact
Progress:
• We have successfully built a working C++ ML setup (cladtorch + clad).
• We have demonstrated the core feasibility of using Clad for end-to-end differentiation

of a complex LLM.
• We have a working, BLAS-optimized training loop.

Impact:
• This work is a step towards enabling efficient LLM training in C++ & HPC environments.
• It provides a powerful, real-world use case for Clad, highlighting its strengths.

Rohan Timmaraju, July 2025 14

Thank You & Questions

	The Challenge of LLM Training
	Our Approach: clad for Backpropagation
	1. Functional C++ Tensor Operations/Inference
	2. End-to-End Differentiation
	From C++ to Gradients
	3. Initial Performance Benchmarks
	Next Steps: Functional to Fast
	Next Steps (pt. 2)
	Midterm Summary & Impact

