
IRIS-HEP Compiler Research
Enhance the incremental compilation error recovery in

clang and clang-repl

Mentors: Dr. Vassil Vassilev, Dr. David Lange
Student: Purva Chaudhari

30 Mar `22

1

Content
➢ Clang-Repl Overview

➢ How Clang-Repl works

➢ Error Recovery in Clang-Repl

➢ Progress till now

➢ Further goals

2

Clang-Repl Overview
● Cling built on top of LLVM and

clang was initially developed to
enable interactive high-energy
physics analysis in a C++
environment.

● Clang-Repl is a new tool which
incorporates Cling in the Clang
mainline

Ref: LLVM review D96033

3

How Clang-Repl works

Read Print
Evaluate

Pipeline

Code
Infrastructure

IncrementalParser IncrementalExecutor Transaction Interpreter

4

Error Recovery in Clang-Repl
❏ Translation unit in clang can be split into a sequence of partial translation

units (PTUs)

❏ Owning PTU is not always the most recent PTU and processing a PTU
might extend an earlier PTU.

❏ Clang-repl recovers from errors by disconnecting the most recent PTU and
update the primary PTU lookup tables

clang-repl> int i = 12; error;
In file included from <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier for all
declarations
int i = 12; error;
 ^
error: Parsing failed.

Ref: Vassil V. Commit - Implement partial translation units and error recovery. 5

Progress till now

Added
recovery flag

Reuse Clang
Tests

Fixing bugs

6

1. Recovery Flag
➢ The recovery mode would enable reusing some of the clang tests to

clang-repl behaviour tests.

➢ Running a behaviour test in recovery mode stores the current PTU,
processes the file and restores back to the stored current PTU

➢ The recovery flag is based on the error recovery logic of the clang-repl

// RUN: clang-repl -recovery -Xcc -fsyntax-only -Xcc -verify
%S/../Sema/address-constant.c
// RUN: clang-repl -recovery -Xcc -fsyntax-only -Xcc -verify
%S/../Sema/arg-scope.c
//expected-no-diagnostics

7

2. Testing

Tests Included Passing
(+ → tests fail in parsing but pass in

interactive mode)

Failed

Sema 23+1 7

SemaCXX 118+2 1

141+3 8

➢ Currently some simple clang tests have been re-used and included in clang-repl
➢ The tests are llvm lit //expected-no-diagnostics
➢ Mostly tests with -fsyntax -verify have been included with a few additional support for other flags

and std c++ versions
➢ The tests do not yet support the -triple flag

8

3. Bug fix for error recovery
Resolved recovery for variable to be reused in case of error occurred in the
same line of parsing (when it was a subsequent parsing).

clang-repl> int j=9; err;
input_line_2:1:10: error: C++ requires a type
specifier for all declarations
int j=9; err;
 ^
error: Parsing failed.
clang-repl> int j = 9;
input_line_3:1:5: error: redefinition of 'j'
int j = 9;

clang-repl> int j=3; err;
In file included from <<< inputs >>>:1:
input_line_1:1:10: error: C++ requires a type
specifier for all declarations
int j=3; err;

clang-repl> int j=3;
clang-repl> ^C

Before After
9

Further goals

Handle failing
tests

Add folders to reuse clang
tests of CodeGen,

CodeGenCXX, Lexer,
Parser

Checking cases for
template-instantiation

10

Failing tests

struct {unsigned x : 2;} x;
__typeof__((x.x+=1)+1) y;
__typeof__(x.x<<1) y;
int y;

1. Redefinition error for
__typeof__ cases

3. Enums handling

enum A { A1, A2, A3 };
typedef enum A A;
void test() {
 A a;
 a++;
 a--;
 ++a;
 --a;
 a = a + 1;
 a = a - 1;
}2. Initialize a variable of

with an rvalue of type 'void *'

char *a = (void*)(uintptr_t)(void*)&a;

11

Failing tests

typedef struct {
 char *str;
 char *str2;
} Class;

typedef union {
 Class *object;
} Instance
__attribute__((transparent_union));

__attribute__((overloadable)) void
Class_Init(Instance this, char *str,
void *str2) {
 this.object->str = str;
 this.object->str2 = str2;
}

4. Use of `this` keyword 5. Redeclaration of static int

static int a;
int bar() {
 extern int a;
 return a;
}
static int a;

12

Thank You

13

