
COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

Enable CUDA Compilation on
Cppyy-Numba generated IR

Mentors: Aaron Jomy, Vassil Vassilev, Wim Lavrijsen, Jonas Rembser

Mentee: Riya Bisht

 Google Summer Of Code 2024

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

INTRODUCTION
- A third-year Computer Science & Engineering undergrad from Graphic Era University, India
- Interested in low-level systems, compilers, runtimes.
- Curious about mysteries of the universe, science and technoculture stuff
- Loves to research and explore new technologies
- Previously, contributed to different open source projects like Unikraft, KDE, Fedora

 Contacts:

 Website: https://riyabisht.com/

 Github: https://github.com/chococandy63

 Twitter: https://twitter.com/chococandy63

 Discord username: ri_root

https://riyabisht.com/
https://github.com/chococandy63
https://twitter.com/chococandy63
https://discordapp.com/users/810072462996930581

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

PROBLEM STATEMENT
Cppyy is a tool that automatically generates Python-C++ bindings at runtime, allowing
Python to call C++ code and vice versa. It has recently added support for Numba, a
high-performance Python compiler that compiles looped code containing C++ objects,
methods, and functions defined via Cppyy(example in the coming slides) into efficient
machine code.

GOAL

The goal is to demonstrate that Cppyy can define CUDA kernels in C++ and launch
them from Python code compiled with Numba, enabling Python users to easily utilize
the power of CUDA-accelerated computing. GPUs applications spans beyond graphics
in the scientific community. Examples: image processing, genetic encoding(simulation
of genetic codes).

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

GPGPU Ecosystem & Scientific Computing
- High compute intensive workloads/code on GPU
- Normal compute intensive workloads on CPU

PAST PRESENT/FUTURE
Gaming,3D Graphics GPGPUs(Scientific computation and simulation)

GPGPU Architecture

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

FUTURE- Heterogeneous Computing

"Mojo and Triton are based on MLIR dialects,

allowing compiler frontend optimizations to be reused"

Sources:

- https://mlir.llvm.org/
- https://openai.com/index/triton/
- https://www.modular.com/max/mojo

https://mlir.llvm.org/
https://openai.com/index/triton/
https://www.modular.com/max/mojo

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

IMPORTANCE OF THIS PROJECT
- Allows scientists to leverage powerful C++ libraries from Python,

combining the performance of C++ with the simplicity and rich
ecosystem of Python.

- Avoids cross language overhead.
- Interoperability between static and dynamic language(Differences

between C++ and Python).
- Enabling CUDA compilation of the Numba-generated code would

allow Python users to easily utilize GPU acceleration when working
with C++ libraries, without sacrificing performance.

- Accelerate Research and Development in Scientific Computing like
Data analysis(ROOT), Machine Learning, computational sciences
like simulating genetic code, protein structures, etc that rely on
both languages.

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

Understanding Cppyy
1. Bindings/Wrappers

[Interaction between C++/Cuda and Python]

[Proxies exposes C++ objects and classes to Python side]

[Reflections enables advanced features like runtime

template instantiation, function callbacks,

cross-language inheritance, etc]

2. GPU compilation pipeline
 [Enabled via Pre-Compiled CUDA headers]

[After enabling CUDA with CLING_ENABLE_CUDA=1, CUDA code can be used and kernels can be
launched from JITed code by in cppyy.cppdef()]

Source: https://morepypy.blogspot.com/2012/06/architecture-of-cppyy.html

https://morepypy.blogspot.com/2012/06/architecture-of-cppyy.html

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

Cppyy-CUDA support

COMPILATION

 CUDA

C++

Cppyy
(Python

front-end)

Pre-Compiled
CUDA

headers

Pre-Compiled
C++ headers

cudadef

cppdef

Cppyy-backend
(Cling

Interactive C++
interpreter)

Numba ??

(Todo: Need to figure out
how Numba fits the picture)

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

Why Numba?
- High performance python JIT compiler
- Numba’s IR- llvmlite, based on LLVM IR

Proof of concept

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

TASKS ACCOMPLISHED
- Project setup done(Faced issues #223 and #232 on my system- Fixed #234)
- Started a docs enhancements PR- #233
- Traced test_numba.py tests using PyCharm debugger(Learnt about proxies, reflections, etc)
- Tested support of Python 3.12 on Cppyy(Reported errors to the mentors)
- Tried running vector add CUDA kernel and reported my findings to the mentors

ToDo: Add a blogpost and presentation to compiler-research-website

Coding period starts !!!!

- Currently: Working on implementing cppyy.cudadef function(similar to cppdef)

https://github.com/wlav/cppyy/issues/223
https://github.com/wlav/cppyy/issues/232
https://github.com/wlav/cppyy/pull/234
https://github.com/wlav/cppyy/pull/233

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

PROPOSED PLAN
Midterm Evaluations
Deliverables: To add some basic level of
implementation. For example, use
std::vector that contains an image. Have a
piece of python that implements gaussian
blur and run both on a gpu.

August,
2024

Final Evaluation

Deliverables: To replace the uniform data
from the image that we showed from the
previous deliverable with an irregular
memory. For example, std::vector of some
object.

November,
2024

Future Scope
Add support for Testing and
Documentation(Also, Debugging
support), Research on adding support for
other graphics APIs.

Nov, 2024-
Future

COMPILER RESEARCH TEAM PRINCETON UNIVERSITY

THANK YOU
for listening!

