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INTRODUCTION
- A third-year Computer Science & Engineering undergrad from Graphic Era University, India
- Interested in low-level systems, compilers, runtimes. 
- Curious about mysteries of the universe, science and technoculture stuff
- Loves to research and explore new technologies 
- Previously, contributed to different open source projects like Unikraft, KDE, Fedora

                                                  Contacts:

                                                   Website: https://riyabisht.com/

                                                                 Github: https://github.com/chococandy63

                                                                                          Twitter: https://twitter.com/chococandy63

                                                                                                                 Discord username: ri_root

https://riyabisht.com/
https://github.com/chococandy63
https://twitter.com/chococandy63
https://discordapp.com/users/810072462996930581
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PROBLEM STATEMENT
Cppyy is a tool that automatically generates Python-C++ bindings at runtime, allowing 
Python to call C++ code and vice versa. It has recently added support for Numba, a 
high-performance Python compiler that compiles looped code containing C++ objects, 
methods, and functions defined via Cppyy(example in the coming slides) into efficient 
machine code.                                                

GOAL 

The goal is to demonstrate that Cppyy can define CUDA kernels in C++ and launch 
them from Python code compiled with Numba, enabling Python users to easily utilize 
the power of CUDA-accelerated computing. GPUs applications spans beyond graphics 
in the scientific community. Examples: image processing, genetic encoding(simulation 
of genetic codes).
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GPGPU Ecosystem & Scientific Computing 
- High compute intensive workloads/code on GPU
- Normal compute intensive workloads on CPU

 

                                                     

PAST           PRESENT/FUTURE
Gaming,3D Graphics     GPGPUs(Scientific computation and simulation)

GPGPU Architecture
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FUTURE- Heterogeneous Computing

"Mojo and Triton are based on MLIR dialects, 

allowing compiler frontend optimizations to be reused"

Sources:

- https://mlir.llvm.org/
- https://openai.com/index/triton/
- https://www.modular.com/max/mojo

https://mlir.llvm.org/
https://openai.com/index/triton/
https://www.modular.com/max/mojo
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IMPORTANCE OF THIS PROJECT
- Allows scientists to leverage powerful C++ libraries from Python, 

combining the performance of C++ with the simplicity and rich 
ecosystem of Python.

- Avoids cross language overhead.
- Interoperability between static and dynamic language(Differences 

between C++ and Python).
- Enabling CUDA compilation of the Numba-generated code would 

allow Python users to easily utilize GPU acceleration when working 
with C++ libraries, without sacrificing performance.

- Accelerate Research and Development in Scientific Computing like 
Data analysis(ROOT), Machine Learning,  computational sciences 
like simulating genetic code, protein structures, etc that rely on 
both languages.
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Understanding Cppyy
1. Bindings/Wrappers

[Interaction between C++/Cuda and Python]

[Proxies exposes C++ objects and classes to Python side]

[Reflections enables advanced features like runtime 

template instantiation, function callbacks, 

cross-language inheritance, etc]

2. GPU compilation pipeline
         [ Enabled via Pre-Compiled CUDA headers]

[After enabling CUDA with CLING_ENABLE_CUDA=1, CUDA code can be used and kernels can be 
launched from JITed code by in cppyy.cppdef()]

Source: https://morepypy.blogspot.com/2012/06/architecture-of-cppyy.html

https://morepypy.blogspot.com/2012/06/architecture-of-cppyy.html
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Cppyy-CUDA support 

COMPILATION

     CUDA

C++

Cppyy
(Python 

front-end)

Pre-Compiled 
CUDA 

headers

Pre-Compiled 
C++ headers

cudadef

cppdef

Cppyy-backend
(Cling 

Interactive C++ 
interpreter)

Numba ??

(Todo: Need to figure out 
how Numba fits the picture )
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Why Numba?
- High performance python JIT compiler
- Numba’s IR- llvmlite, based on LLVM IR 

    

Proof of concept
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TASKS ACCOMPLISHED
- Project setup done(Faced issues #223 and #232 on my system- Fixed #234)
- Started a docs enhancements PR- #233
- Traced test_numba.py tests using PyCharm debugger(Learnt about proxies, reflections, etc)
- Tested support of Python 3.12 on Cppyy(Reported errors to the mentors)
- Tried running vector add CUDA kernel and reported my findings to the mentors

ToDo: Add a blogpost and presentation to compiler-research-website 

Coding period starts !!!!

- Currently: Working on implementing cppyy.cudadef function(similar to cppdef)

https://github.com/wlav/cppyy/issues/223
https://github.com/wlav/cppyy/issues/232
https://github.com/wlav/cppyy/pull/234
https://github.com/wlav/cppyy/pull/233
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PROPOSED PLAN
Midterm Evaluations
Deliverables: To add some basic level of 
implementation. For example, use 
std::vector that contains an image. Have a 
piece of python that implements gaussian 
blur and run both on a gpu.

August, 
2024

Final Evaluation

Deliverables: To replace the uniform data 
from the image that we showed from the 
previous deliverable with an irregular 
memory. For example, std::vector of some 
object.

November, 
2024

Future Scope
Add support for Testing and 
Documentation(Also, Debugging 
support), Research on adding support for 
other graphics APIs.

Nov, 2024- 
Future
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THANK YOU
for listening! 


