
STL/Eigen - Automatic conversion and 
plugins for Python based ML-backends

Khushiyant



About Me

Name - Khushiyant

Student - B.Tech in Computer Science and Engineering 

Professionally - MLE @ Martian

Interest in Tech - Container Orchestration, ML Infra



What is cppyy?

cppyy is a powerful, automatic Python-C++ bindings generator that lets you seamlessly call C++ from 

Python and vice versa. It offers high performance, lazy loading for large projects, cross-inheritance, and 

interactive exploration of C++ libraries—all without the need for intermediate languages or tedious 

boilerplate code. Imagine dynamically mixing Python and C++ features with ease, thanks to cppyy’s use of 

Cling, the C++ interpreter, which matches Python’s dynamism and interactivity. cppyy is future-proof, 

supporting advanced C++ features and modern compilers, effortlessly handling complex tasks like 

working with Boost's boost::any. cppyy can achieve near C++ performance, making it ideal for large-scale, 

distributed development environments.



Example



Problem Statement

Current support follows container types in STL like std::vector, std::map, and std::tuple and the 

Matrix-based classes in Eigen/Dense. Presently, Cpppy’s stl::vector is accessed by cpppy.gbl.std.vector 

doesn’t support arbitrary dimensions, and there is no support for conversion mechanisms between 

Python built-in types, numpy.ndarray, and STL/Eigen data structures.



What are we trying to achieve hopefully
Cppyy for CPU operations in ML backends



Arbitrary Dimension Support for STL Vector

Our major goal is to facilitate CPU operations for machine learning backends (such as JAX), 
however the lack of support for arbitrary dimensions is the first impediment.

Also, Provide support for basic rudimentary types that could be essential in further 
conversion utilities later.

For example, arbitary dimension support will allow processing types like <class 
cppyy.gbl.vector<cppyy.gbl.std.vector<double>> at 0x121053940>



Conversion Mechanism

Since, our goal is to provide support for JAX CPU 

operations, it becomes kind of mandatory due to current 

overhead (2.2x) such as in this case of eigen comma 

insertions.

We are planning to implement better initialisation as well 

as conversion utilities to facilitate the implementation for 

JAX plugins



JAX Plugins and benchmarking

After completion of above milestones, we will implement the JAX plugins where we try to replace JAX 

implementation with cppyy for CPU computes such as matrics, sparse based calculations. Later, it is 

planned to undergo the benchmarking to facilitate and quantify the comparison between JAX and our’s 

implementation.



Q&A


