
Progress Report
March-April 2022

Agenda

● Solved and inspected multiple basic examples with RooFit.
● Conceptualized the code generation approach for RooFit.

○ Worked on converting a Histfactory mode to a n-ary tree like structure that helps parse and
construct the code

○ Built dummy RooFit classes that can be used to perform code generation.
● Presented the Error Estimation Framework at SIAM UQ’22
● Worked on multiple issues/features for the FP Error Estimation Framework.

○ Error printing for clad::estimate_error.
○ Build default std::abs cast over errors + other abstractions over clang expression

generation.
○ Error estimation of nested function calls - In Progress.

1

RooFit Examples with Clad

● The initial part of the work was to check if clad can differentiate simplified
RooFit models.

● As such, we manually coded the C++ equivalent of a basic RooFit model and
also a class that represented the squashed model.

2

double nll002(double lumi, double sigXsecOverSM, double

gamma_stat_channel1_bin_0, double gamma_stat_channel1_bin_1) {

 for (std::size_t iSample = 0; iSample < nSamples; ++iSample)

{

 // calculate mu

 }

 // calculate nll

 return nll;

}

auto nll002_gradient = clad::gradient(nll002,

 "lumi,sigXsecOverSM, \

 gamma_stat_channel1_bin_0, \

 gamma_stat_channel1_bin_1");

RooFit Examples with Clad

● Lastly, we call minimize with the object of the squashed class.
● Two major issues with minimization with clad produced gradients:

○ Minuit1 does not converge correctly - possibly because it relies on the step size provided by
first order numerical derivatives. The step size by that point becomes a good estimate.

○ With Minuit2, the convergence is correct but it takes longer. This could be attributed to the line
search that is performed for minimizations

3

class HFLikelihoodWrapper final : public RooAbsReal {

protected:

 void evaluateGradient(double *out) const override {

 out[0] = 0;

 out[1] = 0;

 out[2] = 0;

 out[3] = 0;

 nll002_gradient.execute(_lumi, _mu, _gamma0, _gamma1, &out[0], &out[1], &out[2], &out[3]);

 }

};

RooFit Examples with Clad

● The biggest challenge is to use AD on software that is really optimized for
using numerical derivatives. As such the AD approach ends up suffering from
overhead incurred by the workarounds.

● All this work is documented on the following github repository:
https://github.com/guitargeek/roofit-clad-work

4

https://github.com/guitargeek/roofit-clad-work

Code-Gen with RooFit

● Model the compute graph with an N-ary tree, model the RooFit classes with a
translate function that translates the corresponding RooFit object to C++
code.

● All this generation is fairly static in nature, only the inputs/results to each
translate function change.

5

std::string NTree::getCode() {

 std::string code = "", global = "";

 getCodeRecur(this, code, global);

 return global + code;

}

void NTree::getCodeRecur(NTree* head, std::string&

code, std::string& global) {

 for(auto it : head->child) {

 getCodeRecur(it, code, global);

 }

 code += head->data->translate(head, global);

}

Code-Gen with RooFit

6

class ExRooHistFunc : public ExRooReal{

public:

 // . . .

 std::string translate(NTree *head, std::string &globalScope) override {

 if (init) {

 globalScope += "double " + name + "[" + std::to_string(nBins) + "]" + initalizer + ";\n";

 if (unroll){

 globalScope += "double binBoundaries[" + std::to_string(nBins + 1) + "];\n";

 std::string x = head->child[0]->data->getResult();

 unrollGetBins(x, bin, globalScope);

 }

 init = false;

 }

 result = name + "[" + bin + "]";

 return "";

 }

};

Code-Gen with RooFit

7

class ExRooHistFunc : public ExRooReal{

public:

 // . . .

 std::string translate(NTree *head, std::string &globalScope) override {

 if (init) {

 globalScope += "double " + name + "[" + std::to_string(nBins) + "]" + initalizer + ";\n";

 if (unroll){

 globalScope += "double binBoundaries[" + std::to_string(nBins + 1) + "];\n";

 std::string x = head->child[0]->data->getResult();

 unrollGetBins(x, bin, globalScope);

 }

 init = false;

 }

 result = name + "[" + bin + "]";

 return "";

 }

};

getResult returns the variable a
RooFit object represents, used to
propagate results/input between
nodes.

Code-Gen with RooFit

8

class ExRooHistFunc : public ExRooReal{

public:

 // . . .

 std::string translate(NTree *head, std::string &globalScope) override {

 if (init) {

 globalScope += "double " + name + "[" + std::to_string(nBins) + "]" + initalizer + ";\n";

 if (unroll){

 globalScope += "double binBoundaries[" + std::to_string(nBins + 1) + "];\n";

 std::string x = head->child[0]->data->getResult();

 unrollGetBins(x, bin, globalScope);

 }

 init = false;

 }

 result = name + "[" + bin + "]";

 return "";

 }

};

globalScope stores variable
declarations so that they can be
placed before the generated code.

Code-Gen with RooFit

8

class ExRooHistFunc : public ExRooReal{

public:

 // . . .

 std::string translate(NTree *head, std::string &globalScope) override {

 if (init) {

 globalScope += "double " + name + "[" + std::to_string(nBins) + "]" + initalizer + ";\n";

 if (unroll){

 globalScope += "double binBoundaries[" + std::to_string(nBins + 1) + "];\n";

 std::string x = head->child[0]->data->getResult();

 unrollGetBins(x, bin, globalScope);

 }

 init = false;

 }

 result = name + "[" + bin + "]";

 return "";

 }

};

If an object specifies “code”, we
build and return it so that it can be
added to the function body.

We also store the variable
represented by this class’s object
in the result variable.

Code-Gen with RooFit

10

ExRooAbsReal SF1("SigXsecOverSM");

ExRooConst SF2(1), SF3(1);

ExRooHistFunc sig(true, "ibin", "sig", "{20, 10}"),

 bgk1(false, "ibin", "bgk1", "{100, 0}"),

 bgk2(false, "ibin", "bgk2", "{0, 100}");

ExRooAbsReal X("x");

ExRooRealSum MU("mu", {&sig, &bgk1, &bgk2}, {&SF1, &SF2, &SF3});

NTree *head = new NTree(/*build a nested tree*/);

std::string code = "double nll(double x, double SigXsecOverSM) { \n"

+ head->getCode()

+ " return " + head->data->getResult() + ";\n}\n";

std::cout << code;

gInterpreter->Declare(code.c_str());

gInterpreter->ProcessLine("#include \"clad/Differentiator/Differentiator.h\"");

gInterpreter->ProcessLine("auto df = clad::gradient(nll, \"SigXsecOverSM\");");

gInterpreter->ProcessLine("df.dump();");

Code-Gen with RooFit

11

double nll(double x, double SigXsecOverSM) {

double sig[2]{20, 10};

double binBoundaries[3];

int ibin= 0;

while (binBoundaries[ibin] < x) {

 ibin++;

}

double bgk1[2]{100, 0};

double bgk2[2]{0, 100};

double mu = 0;

mu += sig[ibin] * SigXsecOverSM;

mu += bgk1[ibin] * 1.000000;

mu += bgk2[ibin] * 1.000000;

return mu;

}

● We are able to also calculate the
derivative of the generated code
using ROOT cling.

● Waiting on a discussion with Jonas
to figure out how to move forward.

SIAM UQ 2022

12

● Talk went well, the recording is up here:
https://siamuq22.us2.pathable.com/meetings/virtual/5MFQ2KnbzDMfH4TWA

● Possible collaboration opportunities, needs some patches/improvements to
the framework.

https://siamuq22.us2.pathable.com/meetings/virtual/5MFQ2KnbzDMfH4TWA

Misc. Clad Features

13

● Working on adding the following features to the error estimation framework.
○ Default-ing the SetError implementation. Done
○ Build default std::abs cast over errors + other abstractions over clang expression

generation. Done
○ Error estimation of nested function calls. Blocked

■ The DiffMode does not persist over nested function calls.
■ Also the plugin is system needs modification everytime I add some new

feature.
■ Also multiple test failures on debug builds due to failed assertions, might be a

good idea to check them out.
○ Error printing for clad::estimate_error. Queued

Future Plans

14

● Figure out next steps with Jonas for the RooFit + AD work.

● Try getting unblocked on the clad issues.

● Also develop a small example/benchmark to understand the overhead of the error
estimation code generation on the usual gradient generation.

