
Supporting Automatic Differentiation in
CMS Combine profile likelihood scans

Galin Bistrev (CERN Summer Student)
Supervisors:Jonas Rembser ,Vassil Vassilev , David Lange

 Compiler Research Meeting – 25.09.2025

 Likelihoods in High Energy Physics

2

Likelihoods describe the
probability of observing data
given model parameters (POIs
+ nuisance parameters).

Profile likelihoods optimize
nuisance parameters for each
fixed value of the parameters of
interest.

The profile NLL shape is used to
extract uncertainties and build
confidence intervals.

parameters of interest

nuisance parameters

primary observables

auxiliary observables

Discrete Profiling in CMS Combine

3

Discrete profiling: treats model choice (e.g.
background function) as a discrete nuisance
parameter, building the profile likelihood as an
envelope over NLL curves from all models.

This method incorporates a correction factor in
the NLL, proportional to the number of free
parameters in each model, to prevent a more
complex models from being favored solely due
to their flexibility and to ensure a fair comparison
across models of varying complexity

 Black = full profile likelihood,
blue = best-fit nuisances, red =
fixed alternative choices, green =
envelope curve including
systematics

The method captures systematic uncertainty
from model choice but is computationally
heavy; Automatic Differentiation (AD) would
accelerate minimization in Combine.

https://arxiv.org/abs/1408.6865

 Automatic Differentiation in RooFit

4

 Automatic Differentiation (AD) - set of
techniques to evaluate the exact
derivative of a computer program:
● employs the chain rule to

decompose the compute graph
into sequence of elementary
operations

● Each scan requires many
minimizations with floating
nuisances; AD adds a one-time
code generation overhead, but
the compiled gradient is reused in
all fits, amortizing the cost

Numerical Differentiation - set of
techniques to approximate the
derivative of a function using finite
differences:
● replaces derivatives with

difference quotients
● varying one parameter at a

time and reevaluating the
likelihood.

 Automatic Differentiation in RooFit

5

01-October-2024 2 V. Vassilev et al -- Automatic Differentiation in
RooFit – CMS ML Town Hall

Automatic Differentiation in RooFit

6

01-October-2024 2 V. Vassilev et al -- Automatic
Differentiation in RooFit – CMS ML Town Hall

Support for AD in CMS Combine-RooMultiPdf

7

Discrete profiling - main minimization
algorithm in Combine -
CascadeMinimizer.cxx

To enable AD in Combine, the discrete
profiling logic from CascadeMinimizer is
integrated into RooFit’s RooMinimizer,
allowing Combine to reuse AD-enabled
NLL minimization without duplicating
mechanisms.

First step - importing the class
RooMultiPdf - switching of discrete PDF
indices

Statistical penalty applied
during the profiling. By default, the
correction to the NLL is 0.5 times the
number of free parameters.

inline RooAbsPdf *getCurrentPdf() const {

return getPdf(getCurrentIndex()); }

inline RooAbsPdf *getPdf(int index) const { return

static_cast<RooAbsPdf *>(c.at(index)); }

 double cFactor = 0.5;

Returns the currently active Pdf based
on the RooCategory index

Returns the PDF at the specified position in the internal list.
The index is explicitly provided to select a particular PDF.

Support for AD in CMS Combine-Codegen implementation

8

The next step is to design the
implementation to be supported by the
RooFit code generation engine, dubbed
“codegen”- generate optimized C++
code for evaluating a RooMultiPdf

In MathFunc.h

In CodegenImpl.cxx

inline double multipdf(int idx, const double* pdfs) {

 return pdfs[idx];

}

int numPdfs = arg.getNumPdfs();

 if (numPdfs > 2) {

 ctx.addResult(&arg,

ctx.buildCall(mathFunc("multipdf"),

arg.indexCategory(), arg.getPdfList()));

 std::cout << "MathFunc call used\n";

 }

multipdf()- utility function used in RooFit for handling
RooMultiPdf objects during code generation. Its purpose is
to select the value of a PDF from an array of precomputed
PDF values based on the active discrete index.

For RooMultiPdf objects with more than
two PDFs, the code tells RooFit to use
the multipdf() function to select the
active PDF in the generated C++ code,
making it compatible with AD.

Support for AD in CMS Combine-Codegen implementation

9

Alternatively for numPdfs < 2 , we use
ternary expressions for more efficient
generation instead of multipdf()

 for (int i = 0; i < numPdfs; ++i) {

 RooAbsPdf *pdf = arg.getPdf(i);

 std::string pdfExpr = ctx.getResult(*pdf);

 expr += "(" + indexExpr + " == " + std::to_string(i) + " ? (" + pdfExpr + ") : ";

 }

The final expr string is a C++ representation of the
RooMultiPdf that will choose the correct PDF depending on
the current discrete index.

Support for AD in CMS Combine - Minimization logic

10

In order to import the discrete profiling algorithm in RooFit key pieces of logic and code
from CascadeMinimizer.cxx and utils.cc from Combine have been imported into
RooMinimizer.cxx.

Creates a list of index combinations
by first initializing the base
configuration with all indices set to
zero and then generating new
combinations by changing only one
category at a time.

Adjusts each combination of indices
generated by
generateOrthogonalCombinations()
by shifting indices such that the central
combination is the one with the
currently knows best NLL value.

Freezes parameters that are
disconnected from the
likelihood computation graph
(sigma for gauss , lambda for
expo , etc.)

generateOrthogonalCombinations()
reorderCombinations()

FreezeDisconnectedParametersRAII()

bool RooMinimizer::fitFCN()

the internal function-callable likelihood evaluator
used during minimization

https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/blob/main/src/CascadeMinimizer.cc
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/blob/5989a5b5a3efd75044426c5c9bfbc06678af38c1/src/utils.cc#L953
https://github.com/root-project/root/blob/7f4454ac0fa72726ec2959da6761ac4dc239f149/roofit/roofitcore/src/RooMinimizer.cxx

Support for AD in CMS Combine - Minimization logic

11

0,1 0,1,2

RooMultiPdf
number

sub-Pdf number

generateOrthogonalCombinations()

std::vector<int> maxValues {2,3};

input to

FreezeDisconnectedParametersRAII()

input

RooMinimizer const *minimizer

RooAbsMinimizerFcn const &fcn

Freeze
disconnected
parameters

Support for AD in CMS Combine - Minimization logic

12

For example best NLL
value is (1,1)

reorderCombinations()

std::vector<std::vector<int>> &combos

stores

const std::vector<int> &max

const std::vector<int> &base

maximum size for each index

bias the next set of combinations
toward the current best combo

input

in
pu

t

Support for AD in CMS Combine - Minimization logic

13

Before discrete profiling - Non-constant RooCategory objects
are collected as discrete nuisances to profile. If none exist, a
standard continuous minimization is performed on the
remaining free variables.

 if (nPdfs == 0) {

 coutI(Minimization) << "[fitFCN] No discrete parameters, performing continuous

minimization only" << std::endl;

 FreezeDisconnectedParametersRAII freeze(this, *_fcn);

 bool isValid = _minimizer->Minimize();

 if (!_result)

 _result = std::make_unique<FitResult>();

 fillResult(isValid);

 if (isValid)

 updateFitConfig();

 return isValid;

 }

Support for AD in CMS Combine - Minimization logic

14

If discrete parameters are present, the algorithm proceeds by
generating combinations of their index values via
generateOrthogonalCombinations(). The discrete category indices
are then updated and reordered using reorderCombinations().
The combination is also marked as “tried” to avoid repeating the
same evaluation:

 while (improved) {

 improved = false;

 auto combos = generateOrthogonalCombinations(maxIndices);

 reorderCombinations(combos, maxIndices, bestIndices);

 for (const auto &combo : combos) {

 if (tried.count(combo))

 continue;

15

Support for AD in CMS Combine - Minimization logic

For every possible combination of
PDF choices, the algorithm sets the
indices accordingly. Then it freezes
the category parameters so they
don’t change during minimization,
runs the minimizer to obtain the NLL
value, and restores the categories to
their original state. The minimized
NLL value is stored for this
combination. If it improves on the
current best NLL, the best value and
its corresponding indices are
updated (pseudo code):

for each combination of PDF indices:

 set PDF indices according to combination

 //Freeze categories during continuous minimization

 store current constant state of each index

 set all índices constant

 freeze disconnected parameters

 run minimization

 restore original constant state of indices

 val = minimized NLL value

 save val for this combination

 if val < bestNLL:

 bestNLL = val

 bestIndices = combination

Support for AD in CMS Combine - Results

16

A tutorial in RooFit was
created showcasing the
construction of different
models composed of multiple
RooMultiPdf objects across
two different categories with a
shared parameter (mean)

Category 1 (bottom): RooMultiPdf combining a
Gaussian and Landau, mixed with an extra
exponential via RooAddPdf with frac1

Category 0 (top): RooMultiPdf combining an
exponential and Chebyshev polynomial, mixed
with an extra Gaussian via RooAddPdf with frac0.

Tutorial: rf619_discrete_profiling.C
 rf619_discrete_profiling.py

https://github.com/root-project/root/blob/7f4454ac0fa72726ec2959da6761ac4dc239f149/tutorials/roofit/roofit/rf619_discrete_profiling.C
https://root.cern/doc/master/rf619__discrete__profiling_8py.html

Support for AD in CMS Combine - Results

17

In the tutorial a discrete profiling
scan over the mean is then carried
out across all PDF index
combinations.The black curve on the
figure shows the combination that
gives the best NLL for a given mean
value.

 std::unique_ptr<RooAbsReal> nll1(simPdf.createNLL(*data, EvalBackend("codegen")));

 RooMinimizer minim(*nll1);

minim.minimize("Minuit2", "Migrad"); Builds the negative log-likelihood function from
the model and the data, then hands that function
to a minimizer object minim()that will adjust the
model parameters to find the best fit.

Support for AD in CMS Combine - Conclusions

18

Conclusions:
● The method was

successfully
implemented in the
RooFit environment and
it works with codegen. It
is also documented in
CDS

● Benchmark shows that
observed performance
falls short due to
unnecessary overhead
in the gradient
generated by Clad.

An issue that shows the benchmark along
with the problem in Clad is presented
at:https://github.com/vgvassilev/clad/issue
s/1521
Assignment for Petro Zaritsky

The conceptual solution in the issue involves moving the
loop body into a separate function (double roo_inner_func())
and computes loop-independent constants outside. This lets
Clad differentiate only a single iteration, reducing overhead
and making AD much faster. In RooFit, however, this is hard
to implement due to many constants defined outside the
loop.

https://repository.cern/records/mvdzp-bsz47
https://github.com/vgvassilev/clad/issues/1521
https://github.com/vgvassilev/clad/issues/1521

Support for AD in CMS Combine - Future work

19

● Further benchmarking is needed in order to
estimate the advantage of AD.

● Additional optimization of Clad , would be
needed so that there is no unnecessary
overhead .

● The logic implemented in RooMinimizer
should be tested for different models in
order to see minimizer response.

● Extend doxygen documentation of
RooMinimizer to describe treatment of
discrete
parameters.

● Test if the implementation of discrete
profiling works also inside CMS Combine ,
replacing their implementation in
CascadeMinimizer.cxx

Thank you !

