
Improving performance of C++
modules in Clang

Problem Statement
The C++ modules technology aims to provide a scalable compilation model for the
C++ language. The C++ Modules technology in Clang provides an io-efficient, on-
disk representation capable to reduce build times and peak memory usage. The
internal compiler state such as the abstract syntax tree (AST) is stored on disk and
lazily loaded on demand. C++ Modules improve the memory footprint for
interpreted C++ through the Cling C++ interpreter developed by CERN and the
compiler research group at Princeton. The current implementation is pretty good at
making most operations on demand.
However in a few cases, we eagerly load pieces of the AST, for example at module
import time and upon selecting a suitable template specialization. When selecting
the template specialization we load all template specializations from the module
files just to find out they are not suitable. There is a patch that partially solves this
issue by introducing a template argument hash and use it to look up the candidates
without deserializing them. However, the data structure it uses to store the hashes
leads to quadratic search which is inefficient when the number of modules
becomes sufficiently large.

Serialization
Serialization is the process of writing or reading an object to or from a persistent
storage medium such as a disk file.

Deserialization
The byte stream, once created, also can be streamed across a communication link to
a remote receiving end. The reverse of serialization is called deserialization, where
the data in the byte stream is used to reconstruct it to its original object form.

Eager Deserialization

Example when eager deserialization cannot be avoided: until c++20 we could lazily
deserialize the vtable information but due to constexpr virtual in c++20 we
cannot anymore.

In Clang
Serialization and Deserialization
clang/include/clang/Serialization/ASTDeserializationListener.h

void ASTWriter::ModuleRead(serialization::SubmoduleID ID, Modu

le *Mod) {

 assert(SubmoduleIDs.find(Mod) == SubmoduleIDs.end());

 SubmoduleIDs[Mod] = ID;

}

Simple code to understand deserialization

Eager Deserialization
Module import time
https://github.com/llvm/llvm-
project/commit/c52efa7d4011a48ea91b353f2cbc40a359d19571

https://github.com/llvm/llvm-project/commit/c52efa7d4011a48ea91b353f2cbc40a359d19571

Upon selecting a suitable template specialization
When selecting the template specialization we load all template specializations from
the module files just to find out they are not suitable.

With lazy deserialization, builtins are loaded on-demand, and unused builtins are
never loaded into the Isolate. Lazy deserialization comes with memory savings.

Existing (using print statements)

https://github.com/llvm/llvm-
project/blob/main/clang/include/clang/Serialization/ASTBitCodes.h#L484-L492
EAGERLY_DESERIALIZED_DECLS

�. https://github.com/llvm/llvm-
project/blob/main/clang/lib/Serialization/ASTReader.cpp#L3259-L3264

�. https://github.com/llvm/llvm-
project/blob/main/clang/lib/Serialization/ASTReader.cpp#L7486

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Serialization/ASTBitCodes.h#L484-L492
https://github.com/llvm/llvm-project/blob/main/clang/lib/Serialization/ASTReader.cpp#L3259-L3264
https://github.com/llvm/llvm-project/blob/main/clang/lib/Serialization/ASTReader.cpp#L7486

�. https://github.com/llvm/llvm-
project/blob/main/clang/lib/Serialization/ASTReader.cpp#L1573-L1604

Preallocated source locations for modules which are not loaded. There was some
plan to reduce this but didn't go anywhere.

https://github.com/llvm/llvm-project/blob/main/clang/lib/Serialization/ASTReader.cpp#L1573-L1604

�. Another preloading: https://github.com/root-
project/root/blob/master/interpreter/llvm/src/tools/clang/lib/Serialization/AST
Reader.cpp#L3176

Previous work
https://reviews.llvm.org/D41416

Partially solves this issue by introducing a template argument hash and use it to look
up the candidates without deserializing them.

https://github.com/root-project/root/blob/master/interpreter/llvm/src/tools/clang/lib/Serialization/ASTReader.cpp#L3176
https://reviews.llvm.org/D41416

This way we managed to catch a few collisions in the ODRHash logic.

Check if we have already specialization and which are the exact ones (we load all
decls with the same hash to avoid potential collisions) to deserialize.

Improvement/Optimization: the data structure it uses to store the hashes leads to
quadratic search which is inefficient when the number of modules becomes
sufficiently large.

Roadmap

Investigate and resolve eager deserialization where
possible
�. Use the internal clang AST counters to file what is eagerly deserialize.
�. Add printf in ASTReader::ReadDecl and load a bunch of modules without

using them. This ideally should be a nop. If that's not the case it has to be
debugged and investigated further.

Rework the patch to use on-disk hash tables to avoid the
quadratic search complexity
�. Move to using an on-disk hash table for template specialization lookup, at least

for templates with large numbers of specializations
�. Currently when we hash a tag type the visitor calls ODRHash::AddDecl which

mostly relies on the decl name give distinct hash value. The types coming from
template specializations have very similar properties (including decl names). For
those we need to provide more information in order to disambiguate them. This
patch adds the template arguments for the template specialization decl
corresponding to its type. We manage to reduce further the amount of
deserializations from 1117 down to 451.

�. Stats:
types read is down from 30% to 17%
 declarations read is down from 34% to 23%
number of ClassTemplateSpecializations read has decreased by 30%,
number of CXXRecordDecls read is down 25%
total ASTContext memory usage is down by 12%

�. calculate hash

�. Add template argument

�. ASTWriter.cpp

�. Added template specialistion info.

�. https://github.com/root-
project/root/blob/master/interpreter/llvm/src/tools/clang/lib/Serialization/AST
Reader.cpp#L3134-L3145

https://github.com/root-project/root/blob/master/interpreter/llvm/src/tools/clang/lib/Serialization/ASTReader.cpp#L3134-L3145

Read a blob of identifiers from a module file and then put that blob into that table
which is of type llvm::OnDiskIterableChainedHashTable.

Measure performance improvements

Size — du -sh *pcm
sort largest to smallest measure of file space amount recursively stored in directory

Memory Consumption — /usr/bin/time -v root.exe -l -b -q tutorials/hsimple.C
Compared against eager deserialization, reduce heap size.

Use the internal performance counters in clang - https://godbolt.org/z/s61fxoYPs

https://godbolt.org/z/s61fxoYPs

Internal performance counters:
*** AST Context Stats:

 25662 types total.

 5 Decayed types, 48 each (240 bytes)

 133 ConstantArray types, 56 each (7448 bytes)

 21 DependentSizedArray types, 64 each (1344 bytes)

 19 IncompleteArray types, 40 each (760 bytes)

 62 Builtin types, 24 each (1488 bytes)

 103 Decltype types, 40 each (4120 bytes)

 18 Auto types, 48 each (864 bytes)

 969 DependentName types, 48 each (46512 bytes)

 43 DependentTemplateSpecialization types, 48 each (2064 by

tes)

 736 Elaborated types, 48 each (35328 bytes)

 6419 FunctionProto types, 40 each (256760 bytes)

 645 InjectedClassName types, 40 each (25800 bytes)

 76 MemberPointer types, 48 each (3648 bytes)

 148 PackExpansion types, 40 each (5920 bytes)

 98 Paren types, 40 each (3920 bytes)

 1861 Pointer types, 40 each (74440 bytes)

 1505 LValueReference types, 40 each (60200 bytes)

 324 RValueReference types, 40 each (12960 bytes)

 1015 SubstTemplateTypeParm types, 40 each (40600 bytes)

 87 Enum types, 32 each (2784 bytes)

 716 Record types, 32 each (22912 bytes)

 6815 TemplateSpecialization types, 40 each (272600 bytes)

 2935 TemplateTypeParm types, 40 each (117400 bytes)

 32 TypeOfExpr types, 32 each (1024 bytes)

 869 Typedef types, 32 each (27808 bytes)

 1 UnaryTransform types, 48 each (48 bytes)

 7 Using types, 40 each (280 bytes)

Total bytes = 1029272

31/518 implicit default constructors created

98/591 implicit copy constructors created

54/543 implicit move constructors created

34/595 implicit copy assignment operators created

7/543 implicit move assignment operators created

43/544 implicit destructors created

Number of memory regions: 513

Bytes used: 7701107

Bytes allocated: 7929856

Bytes wasted: 228749 (includes alignment, etc)

Reduced memory consumption — ask Google to run the reimplemenation of
D41416 on their builds

https://rootbnch-grafana-test.cern.ch/dashboards

Build ROOT with -Druntime_cxxmodules=On on Windows

How to model the partial template specializations
Allows customizing class and variable templates for a given category of template
arguments.
Examples of partial specializations in the standard library include std::unique_ptr,
which has a partial specialization for array types.

example: from https://en.cppreference.com/w/cpp/language/partial_specialization
When a class or variable template is instantiated, and there are partial
specializations available, the compiler has to decide if the primary template is
going to be used or one of its partial specializations.

1) If only one specialization matches the template arguments, that specialization
is used

https://rootbnch-grafana-test.cern.ch/dashboards
http://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/language/partial_specialization

2) If more than one specialization matches, partial order rules are used to
determine which specialization is more specialized. The most specialized
specialization is used, if it is unique (if it is not unique, the program cannot be
compiled)
3) If no specializations match, the primary template is used

- the first function template has the same template parameters as the first partial
specialization and has just one function parameter, whose type is a class
template specialization with all the template arguments from the first partial
specialization
- the second function template has the same template parameters as the second
partial specialization and has just one function parameter whose type is a class
template specialization with all the template arguments from the second partial
specialization.

The function templates are then ranked as if for function template overloading.

https://en.cppreference.com/w/cpp/language/function_template#Function_template_overloading

