The CaaS Projecit.
Progress & Plans Q3, Q4

Vassil Vassilev

Project Goals

Support for incremental compilation (clang::liblnterpreter, Clang-Repl)
Language interoperability layer (cppyy, liblnterOp)
Heterogeneous hardware support (offload execution, clad demonstrator)

Use case development & community outreach (tutorial development,
demonstrators)

Project Goals

In [1]: struct S { double val = 1l.; };

LA,

In [2]: from libInterop import std
python vec = std.vector(S)(1)

In [3]: print(python vec[0].val) ﬁ
1
In [4]): class Derived(S) P

def 1init (self):
self.val = 0
Derived()

res

In [5]: __global void sum_array(int n, double *x, double *sum) { &'ﬂ
for (int 1 = 0; 1 < n; i++) *sum += X[1i]; '
// Init N=1M and x[1] = 1.f. Run kernel on 1M elements on the GPU.
sum array<<<l, 1>>>(N, x, &res.val);

Enable bi-directional language communication capable of controlling accelerator hardware

Project Goals

C++ as a service

Reroute the cling-based ecosystem more to llvm upstream

4

Q3 Progress

1. [Q1/VV] Upgrade to LLVM 13 — 95% complete

2. [Q1/VV] Update Cling to use more of LLVM13 — (depends on 1.)

3. [Q1/DL] Construct simple patches to upstream dashboard to track — 100% complete
4. [Q1-Q4] Upstream Cling-specific patches — 23/87 complete

5. [Q1-Q4/DL] Keep track of Cling SLoC — Q3
41 files changed, 847 insertions(+), 1242 deletions(-)

6. [Q2/I]] Connect Clang-Repl to the Python Interpreter —100% complete, needs to land in llvm
7. [Q2/PA] Differentiate CUDA kernels — complete for forward mode

8. [Q2/VV] Implement in clang an extension to allow statements on the global scope — D127284

9. [Q2/PC] Advance error recovery and code unloading — D126682

10. [Q4/1I/VV] Connect to xeus-cling (scope out missing functionality for xeus-repl) — working Jupyter Xeus-ClangRepl kernel

11. [Q3/1I/VV] Develop demonstrators (eg the one we used for the cssi proposal) — simple example based on builtin types.

https://docs.google.com/spreadsheets/d/1BfQc4lzUFo3p162PJkA3InwiqVgRAbVQSvc0fNVA3n0/edit?usp=sharing
https://reviews.llvm.org/D127284
https://reviews.llvm.org/D126682

Q3 Progress

12. [Q4/11/VV] Basic Connect to xeus-cling (scope out missing functionality for
xeus-repl) — working Jupyter Xeus-ClangRepl kernel

(base) ioanaPIoanas-MacBook-Pro build % ./bin/clang-repl
clang-repl> python

>>> globals()

{'__builtins__': <module '__builtin__°

(built-in)>, '__name__"': '_
_package__"': None}
>>> new_var
Traceback (most recent call last):
File "", line 1, in <module>

NameError: name 'new_var' is not defined
>>> AD

clang-repl> int new_var = 0;
clang-repl> python
>>> globals()

{'__builtins__"': <module '__builtin__"' (built-in)>, '__name__"': '_ _', 'new_var':

c__': None, '__package__"': None}

>>> new_var
(%)

55> imnort numnv _As nn

>>> a = np.asarray([new_var, new_var + 1, new_var +2])
>>> a

arrav([e, 1, 21)

Q3 Progress

14.[Q3/1I/VV] Develop demonstrators (eg the
one we used for the cssi proposal) — simple
example based on builtin types.

15.[VV] Added OpenMP support

Jupyter Clang-Repl C+= Python Integration Demo s cranges d Logout

File Edit Vie

E + x @

In [1]:

In [2]: thnc

In [3]:

Ireart Coall Karnel Help isted clang-repl O

B » &4 PR B C P Makdeown r=

Setup Computation in Python

nython
nThreads=11,2,4,8,16,32]
nurF1lips-1009000000
nTrials = len(nThreacs)

Computationally intensive C++ code & use OpenMP to
speed it up

ude “coint lip.cc”

std::vectar<int> corputed = “ineTt(numFl1ps, nThreads, nTrials;;

Plot the results in Python

python

import metplotlib.pyplot as plt
pll.plot{nThreads, cumpulsd, LinewidLh=3)
olt.xlabeli'Number ¢t threads')
olt.ylabeli'Time to conplete')
nlt.ylim(ynin=@)
olt.savefig('line_plct22.png')

1eth
o |
] \
14

4.

Carry-over for Q4

Rebase cppyy to use cling-only interfaces (making cppyy ROOT-independent) —
Q1/BK = Q4

The task is about transforming the various ROOT Meta layer calls to their underlying clang/cling analogs

Define a set of new classes which handle what’s needed (eg TClingCallFunc,
etc) — Q1/BK = VVW/Q4

The task is about extracting the common cases where we need a lot of boilerplate code and provide abstractions for it.
For example, the mechanism to call functions in a uniform way (currently done with TClingCallFunc) needs to modernized

into its own ROQOT-independent entity in libinterOp

Connect liblnterOp with clang-repl — Q2/BK — Q4
The python interpreter provides C APl which allows to expose itself and switch to writing python code on the prompt. In
ROOT this happens via TPython::Prompt and we want the modern version of this for clang-repl.

Improve test cases and demonstrators — Q2/Il = Q4
The task is about updating the existing demonstrators and developing new ones given the advances in Clad.

Carry-over for Q4

. Add extensible value printing facility — Q2/VV — Q4

The task is to improve and generalize the implementation of the PTX support in cling and demonstrate it in clang-repl.

Rebase cppyy to use clang-repl/libinterpreter interfaces — Q2/BK — Q4
Develop demonstrators (eg the one from the Jupyter mockup) — Q2/BK — N/A

Design and Develop a CUDA engine working along with C++ mode — Q2/1l = N/A

The task is to improve and generalize the implementation of the PTX support in cling and demonstrate it in clang-repl.

. Design and implement a backend capable of offloading computations to a GPGPU.
Assess technical performance of gradient produced by Clad on GPGPU — Q2/Il,vVV
— N/A

Support Tensors and showcase differentiation of Eigen entities — Q1/PA — N/A

9

Carry-over for Q4

7. Add more clad benchmarks — Q2/DL — Q4

8. Add extensible value printing facility — Q2/VV — Q4

9. Write a paper on incremental C++ — Q2/\VV\V = Q4

10. Write a paper on AD for the aggregate types — Q2/PA — N/A

11. Write an Error Estimation paper — Q2/GS — Q4

10

Plans for Q4

Upstream the type sugaring patch — GSoC Matheus

The task includes re-engineering the solution we have in ROOT and making it acceptable for Clang.

Upstream the lazy template specializations patch —> N/A

The task includes re-engineering the solution we have in ROOT and making it acceptable for Clang.

Develop documentation, examples and tutorials (in llvm documentation

as well) — Sara and Rohit
The task writing technical documentation and blog posts about the developed technologies.

Initiate tutorial development within the Clang-Repl community and
integrate Clang-Repl into Xeus. Blog post on working notebook

demonstrating tutorial — Sara and Rohit?
The task writing technical documentation and blog posts about the developed technologies.

11

Plans for Q4

Implement an API to offload computations on GPGPUs in CaaS allowing to mix C/C++/
CUDA and demonstrate Clad gradient in CUDA — ?

Optimize ROOT use of modules for large codebases (eg, CMSSW) — GSoC Jun

One source of performance loss is the need for symbol lookups across the very large set of CMSSW modules. ROOT needs to be
improved to optimize this lookup so that it does not pull all modules defining namespace edm on edm:: X lookups. The task includes
iImplementing a global module index extension which keeps information if an identifier name was a namespace and then integrating it in

CMSSW builds.

Develop and document interoperability demonstrators based on MolSSI| software packages

— (1]

Write a paper on C++ Compiler As A Service. Dynamic Language Interop with C++ — [BK/

W]

Implement the LLVM extension of binding C++ memory management model more
accurately and implement prototype using cppyy based on LLVM IR and the type resugaring

12

GSoC 2022

Contributors

Surya Somayyajula

IRIS-HEP Fellow, University of
Wisconsin-Madison, USA
Improve Cling’s packaging
system: Cling Packaging
Tool
(May 2022-Sep 2022)

Manish Kausik H

GS0C22, Computer Science and
Engineering(Dual Degree), Indian
Institute of Technology Bhubaneswar

Add Initial Integration of
Clad with Enzyme
(May 2022-Sep 2022)

Matheus Izvekov

GS50C22, Computer Science
Preserve type sugar for

member access on
template specializations

(May 2022-SepNov 2022)

Sunho Kim

GS0C22, De Anza College,
Cupertino, USA

Write JITLink support for
a new format/architecture
(ELF/ AARCH64)
(May 2022-Sep 2022)

Jun Zhang

GS0C22, Anhui Normal University,
WuHu, China
Optimize ROOT use of
modules for large

codebases
(May 2022-Sep 2022)

Anubhab Ghosh

GS0C22, Indian Institute of
Information Technology, Kalyani,
India

Shared Memory Based
JITLink Memory Manager
(May 2022-Sep 2022)

Surya Somayyajula

IRIS-HEP Fellow,
Improve Cling’s packaging system: Cling Packaging Tool University of

(May 2022-Sep 2022). Slides: here. Wisconsin-Madison.

Project Objectives Rewriting the CPT

¢ Impraovementsto be made Using a different program execution starting point

o Fixing plaftform issues . . . _ . o | added a new if name block separate from all the program functions
m Thismostly entails fixing builds with LLVM on Linux and Mac OS Revamping the argument parser

m Debian packaging creation : - . , :
m Fixing Windows builds o | added an option to only build Cling and not package it, as users want this option

o Rewriting the CPT itself o | added some dependent arguments so that errors would be caught before any building is done

m Afull rewrite of the CPT, fixing old features as well as adding new features, and o lalsorenamed some arguments for consistency
getting rid of non-functional options | added a feature to specify the number of CPU cores to use when building Cling

o Rewriting documentation

m Adding new documentation for rewrite and fixes, as well as rewriting old R . _ e e
documentation for overriding variables o Implemented parameter passing style for a couple of global variables where possible, as most of

o Fixing miscellaneous issues the global variables are deeply embedded in the CPT
m Fixing specific software dependency issues Made the CPT more flake8 compliant, although almost all of the flake8 errors are due to
the lines being longer than 79 characters

Reduced global variable mutation

16

https://compiler-research.org/assets/presentations/CaaS_Weekly_10_08_2022_Surya_Somayyajula_Improving_the_Cling_Packaging_Tool.pdf

Manish Kausik H

o . . GSoC22, Indian
Add Initial Integration of Clad with Enzyme Institute of Technology
(May 2022-Sep 2022). Slides: here and here. Final report. Blog Post. Bhubaneswar
Implementation Ideas Integrating Enzyme Reverse Mode with Clad
2. Reverse Mode Differentiation Code Generation 1. ldentifying a request for using Enzyme with Clad (PR #460)

e DiffCollector::VisitCallExpr must set a variable in the DiffRequest Object,
that states whether the user wants to use enzyme or not.

e ReverseModeVisitior::Derive must create a new branch for Enzyme
DiffRequests, with a constant template code

e Mustlink the Code generated by ReverseModeVisitor::Derive with the
CladFunction class (Need to explore this)

e How can DiffCollector::VisitCallExpr recognise the request for use of
enzyme based on a template parameter? (Need to explore this)

2. Integrating Enzyme as a static library in Clad (PR #466)

3. Generating code for Enzyme Reverse mode with clad (PR #486)

-+

4. Verifying Enzyme generated derivatives with clad(PR #488)

clad::gradient(f) //Normal Calling convention
clad: :gradient<clad: :opts: :use_enzyme>(f) //Calling Convention for using Enzyme within Clad

17

https://compiler-research.org/assets/presentations/CaaS_Weekly_01_05_2022_Manish_Add_Initial_Integration_of_Clad_with_Enzyme.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_31_08_22_Manish-Integration_of_Enzyme_with_Clad_Final_Presentation.pdf
https://compiler-research.org/assets/docs/Manish_Kausik_H_GSoC22_Report.pdf
https://hepsoftwarefoundation.org/gsoc/blogs/2022/blog_CompilerResearch-ManishKausik.html

Matheus lzvekov

Preserve type sugar for member access on template specializations GSoC22
(May 2022-SepNov 2022). Slides: here and here.

In simplest terms, with an example, we want this to work:

;i < |age

t Baz {};

Bar [[gnu::aligned()]] = Baz;

ising type = typename foo<Bar>::type;

// Clang as it stands will fail below assert

'/ as the foo template will only be instantiated

// with the structural part of the argument,

// which the Bar alias 1is not.

// So It only sees Baz, the aligned attribute is never seen.
static_assert(alignof(type) == ');

Accomplishments

We submitted the RFC at https://discourse.llvm.org/t/rfc-improvins
diagnhostics-with-template-specialization-resugaring/64224.

e We have positive feedback, people want to see this implemented
e We got one extra volunteer for reviewing.
e We got feedback that this work might influence debug info.

e We linked to the WIP patch in phabricator.
However, the patch is too big and we must work on splitting it up

18

https://compiler-research.org/assets/presentations/M_Izvekov-GSoC_Roadmap_1.html
https://compiler-research.org/assets/presentations/M_Izvekov-GSoC_Roadmap_2.html

Sunho Kim

GSoC22, De Anza
Write JITLink support for a new format/architecture (ELF/ AARCH64). College, Cupertino,
Slides: here and here. Final report. LSA
Issues of Old JIT Linker My project
e Some horrors e Problem: lack of platform/architecture support in JITLink to make it a viable
o hitps://github.com/llvm/llvm-project/blob/main/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeD replacement for old JIT infrastructures.
vIdELF.cpp#L 1217 (RuntimeDyldELF::processRelocationRef)
Linux (ELF) Mac (MachO) Windows (COFF)
ARM64 0 X
X86_64 0
RISCV X
4 4
 EEEEEEEEEEEEEE———————————————————— e ——————————

19

https://compiler-research.org/assets/presentations/CaaS_Weekly_08_06_2022_Sunho_Write_JITLink_support_for_a_new%20format_architecture.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_10_08_2022_Sunho-Write_JITLink_Support_Current_Progress.pdf
https://compiler-research.org/assets/docs/Sunho_Kim_GSoC22_Report.pdf

Anubhab Ghosh

Shared Memory Based JITLink Memory Manager. Go0C22, Indian
. . Institute of Information
Slides: here. Final report. Technology, Kalyani,

The plan Design and Implementation
= orc::MemoryMapper interface: This is an interface to perform memory allccation, deallocation, setting memory
protections etc. that handles most platform-specific operations. This abstraction allows us to decouple the
transport for generated code from heap management making it simple for clients tec use different transport

¢ A MemoryMapper interface with implementations based on

o Shared memory mechanisms. (D127491)
® When both executor and controller process share same physical memory o orc::TnProcessMemoryMapper : This implementation is used when running code in the same process where the
o Regular memaory allocation APIs JITis runni'\g and uses sys::Memary APL. (0177491)
® When the resultant code is executed in the same process o orc::SharedMemoryMapper : This implementation is used when transferring code to a different executor
m Useful for unit tests precess and uses POSIX or Win32 shared memory APls. (D128544)
c EPC ® orc::MapperJITLinkMemoryManager : This class implements the jitlink::JITLinkMemoryManager interface and
®m Required when the executor and controller process run with different physical memory handies all allocations within a slab. (D130392)
m Resultant code is transferred to the executor process over the EPC channel * Memory coalescing to join two consecutive free ranges and reuse them. (D131831)
. . . e« llvm-jitlink tool integration:
e A JITLinkMemoryManager implementation that can use any MemoryMapper ! 7

5 MapperlITLinkMenoryManager with an InProcessMemoryMapper is used by default when executing the code in

o It will allocate large chunks of memary using MemoryMapper and divide into smaller chunks the same process as the JIT. (D132315)

o Better support for small code model by keeping everything close in memory

C

o MapperlITLinkMenoryManager with a SharedMemcryMapper can be optionally used when --use-shared-memcry
is passed. (D132369)

20

https://compiler-research.org/assets/presentations/CaaS_Weekly_08_06_2022_Sunho_Write_JITLink_support_for_a_new%20format_architecture.pdf
https://gist.github.com/argentite/b265db7604a5ba3c48783c42cefc6908

