The CaaS Projecit.
Progress & Plans Q1, Q2

Vassil Vassilev

Project Goals

Support for incremental compilation (clang::liblnterpreter, Clang-Repl)
Language interoperability layer (cppyy, liblnterOp)
Heterogeneous hardware support (offload execution, clad demonstrator)

Use case development & community outreach (tutorial development,
demonstrators)

Project Goals

In [1]: struct S { double val = 1l.; };

LA,

In [2]: from libInterop import std
python vec = std.vector(S)(1)

In [3]: print(python vec[0].val) ﬁ
1
In [4]): class Derived(S) P

def 1init (self):
self.val = 0
Derived()

res

In [5]: __global void sum_array(int n, double *x, double *sum) { &'ﬂ
for (int 1 = 0; 1 < n; i++) *sum += X[1i]; '
// Init N=1M and x[1] = 1.f. Run kernel on 1M elements on the GPU.
sum array<<<l, 1>>>(N, x, &res.val);

Enable bi-directional language communication capable of controlling accelerator hardware

Project Goals

—_— — — — — — — e— e— e— e— e— e— — — — — — — — — — ———— —

: @ : @ | @ |
- | Python | < > | Python Interpreter| <€ > | InterOp Layer | < > | Clang-Repl|
libIncremental | [: :

N e

A : Swift, Julia @ : C++ as a service
| CLR (C#) | > :
_______________ Programming Environments
(|
I I
[Cling Interpreter] | {Clang—Repl} | [Xeus-Rele
| |
T T T
| l
I I

| I

[ROOTJ : [libInterOpJ : [C++ in notebooksJ
| |
J

C++ as a service

Reroute the cling-based ecosystem more to llvm upstream

4

Q1 Progress

1. [Q1/VV] Upgrade to LLVM 13 — 90% complete
2. [Q1/VV] Update Cling to use more of LLVM13 — (depends on 1.)

3. [Q1/DL] Construct simple patches to upstream dashboard to track — 100% complete

4. [Q1-Q4/VV, GS, BK] Upstream Cling-specific patches — 0% complete

5. [Q1-Q4/DL] Keep track of Cling SLoC — Qf
50 files changed, 695 insertions(+), 1167 deletions(-)

6. [Q1/1l]] ACAT proceedings — sent for review
7. [Q1/PA] Support Tensors and showcase differentiation of Eigen entities —

8.[Q1/GS] Deliver error estimation talk at SIAM incl the req. development— complete

https://docs.google.com/spreadsheets/d/1BfQc4lzUFo3p162PJkA3InwiqVgRAbVQSvc0fNVA3n0/edit?usp=sharing

Carry-over for Q2

1. Connect Clang-Repl to the Python Interpreter — Q1/BK — Q2/II

The python interpreter provides C APl which allows to expose itself and switch to writing python code on the
prompt. In ROOT this happens via TPython::Prompt and we want the modern version of this for clang-repl.

2. Rebase cppyy to use cling-only interfaces (making cppyy ROOT-
independent) — Q1/BK — Q2

The task is about transforming the various ROOT Meta layer calls to their underlying clang/cling analogs

3. Define a set of new classes which handle what’s needed (eg
TClingCallFunc, etc) — Q1/BK — Q2

The task is about extracting the common cases where we need a lot of boilerplate code and provide
abstractions for it. For example, the mechanism to call functions in a uniform way (currently done with
TClingCallFunc) needs to modernized into its own ROOT-independent entity in libinterOp

Carry-over for Q2

9. Connect libinterOp with clang-repl (see 6)— Q1/BK — Q2

The python interpreter provides C APl which allows to expose itself and switch to writing python code on the
prompt. In ROOT this happens via TPython::Prompt and we want the modern version of this for clang-repl.

10. Improve test cases and demonstrators — Q1/ll = Q2

The task is about updating the existing demonstrators and developing new ones given the advances in Clad.

11. Differentiate CUDA kernels — Q1/1l = Q2/PA?

12. Support Tensors and showcase differentiation of Eigen entities — Q1/PA
— Q2

Plans for Q2

15. Implement in clang an extension to allow statements on the global scope — Q2/VV

16. Add extensible value printing facility — Q2/VV

17. Advance error recovery and code unloading — Q2/PC
The task is to make clang-repl more robust when it comes to surviving from errors.

18. Design and Develop a CUDA engine working along with C++ mode —Q2/I1I,SSP

The task is to improve and generalize the implementation of the PTX support in cling and demonstrate it in clang-repl.

19. Rebase cppyy to use clang-repl/libinterpreter interfaces — Q2/BK
20. Develop demonstrators (eg the one from the Jupiter mockup) — Q2/BK

21. Design and implement a backend capable of offloading computations to a GPGPU.
Assess technical performance of gradient produced by Clad on GPGPU — Q2/1l,VV

8

Plans for Q2

22. Add more clad benchmarks — Q2/DL

23. Add extensible value printing facility — Q2/VV — Q3
24. Write a paper on incremental C++ — Q2/VV

25. Write a paper on AD for the aggregate types — Q2/PA

26. Write an Error Estimation paper — Q2/GS

Extra Contributors

» Quite a bit of interest this year through IRIS-HEP, GSoC, GDOC and
unfunded contributors

» More experienced people should help mentoring

» More clarity after May 20.

10

Implement In clang an extension to allow statements on the global scope

Extending C++

Extend the clang parser when building
iIncremental TU

Figure out which is a good place In the
grammar to extend. (Mind CUDA, attribute
parsing vs non-attributes)

Model the new statements in the
PartialTranslationUnit (Mind static init and
performance)

12

Declarations

declaration-seq:

declaration
declaration-seq declaration

declaration:

block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
deduction-guide
explicit-instantiation
explicit-specialization
export-declaration
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
module-import-declaration

block-declaration:

simple-declaration
asm-declaration
namespace-alias-definition
using-declaration
using-enum-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

nodeclspec-function-declaration:

attribute-specifier-seqqpt declarator ;

alias-declaration:

using identifier attribute-specifier-seqopt

Annex A (informative)
Grammar summary

= defining-type-id ;

