
The CaaS Project. 
 Progress & Plans Q1, Q2

Vassil Vassilev



Project Goals

• Support for incremental compilation (clang::libInterpreter, Clang-Repl)


• Language interoperability layer (cppyy, libInterOp)


• Heterogeneous hardware support (offload execution, clad demonstrator)


• Use case development & community outreach (tutorial development, 
demonstrators)

2



Project Goals

Enable bi-directional language communication capable of controlling accelerator hardware

3



Project Goals

Reroute the cling-based ecosystem more to llvm upstream

4



Q1 Progress
1. [Q1/VV] Upgrade to LLVM 13 — 90% complete


2. [Q1/VV ] Update Cling to use more of LLVM13 — 60% complete (depends on 1.)


3. [Q1/DL] Construct simple patches to upstream dashboard to track — 100% complete


4. [Q1-Q4/VV, GS, BK] Upstream Cling-specific patches — 0% complete


5. [Q1-Q4/DL] Keep track of Cling SLoC — Q1 
50 files changed, 695 insertions(+), 1167 deletions(-)


6. [Q1/II] ACAT proceedings — sent for review


7. [Q1/PA] Support Tensors and showcase differentiation of Eigen entities — 50% complete


8.[Q1/GS] Deliver error estimation talk at SIAM incl the req. development— complete

5

https://docs.google.com/spreadsheets/d/1BfQc4lzUFo3p162PJkA3InwiqVgRAbVQSvc0fNVA3n0/edit?usp=sharing


Carry-over for Q2
1. Connect Clang-Repl to the Python Interpreter — Q1/BK → Q2/II 

The python interpreter provides C API which allows to expose itself and switch to writing python code on the 
prompt. In ROOT this happens via TPython::Prompt and we want the modern version of this for clang-repl. 

2. Rebase cppyy to use cling-only interfaces (making cppyy ROOT-
independent) — Q1/BK → Q2 
The task is about transforming the various ROOT Meta layer calls to their underlying clang/cling analogs 

3. Define a set of new classes which handle what’s needed (eg 
TClingCallFunc, etc) — Q1/BK → Q2 
The task is about extracting the common cases where we need a lot of boilerplate code and provide 
abstractions for it. For example, the mechanism to call functions in a uniform way (currently done with 
TClingCallFunc) needs to modernized into its own ROOT-independent entity in libInterOp

6



Carry-over for Q2

9. Connect libInterOp with clang-repl (see 6)— Q1/BK → Q2 
The python interpreter provides C API which allows to expose itself and switch to writing python code on the 
prompt. In ROOT this happens via TPython::Prompt and we want the modern version of this for clang-repl. 

10. Improve test cases and demonstrators — Q1/II → Q2 
The task is about updating the existing demonstrators and developing new ones given the advances in Clad. 

11. Differentiate CUDA kernels — Q1/II → Q2/PA?


12. Support Tensors and showcase differentiation of Eigen entities — Q1/PA 
→ Q2

7



Plans for Q2
15. Implement in clang an extension to allow statements on the global scope — Q2/VV


16. Add extensible value printing facility — Q2/VV


17. Advance error recovery and code unloading — Q2/PC 
The task is to make clang-repl more robust when it comes to surviving from errors.


18. Design and Develop a CUDA engine working along with C++ mode —Q2/II,SSP 
The task is to improve and generalize the implementation of the PTX support in cling and demonstrate it in clang-repl.


19. Rebase cppyy to use clang-repl/libInterpreter interfaces — Q2/BK


20. Develop demonstrators (eg the one from the Jupiter mockup) — Q2/BK


21. Design and implement a backend capable of offloading computations to a GPGPU. 
Assess technical performance of gradient produced by Clad on GPGPU — Q2/II,VV

8



Plans for Q2

22. Add more clad benchmarks — Q2/DL


23. Add extensible value printing facility — Q2/VV → Q3


24. Write a paper on incremental C++ — Q2/VV


25. Write a paper on AD for the aggregate types — Q2/PA


26. Write an Error Estimation paper — Q2/GS

9



Extra Contributors

• Quite a bit of interest this year through IRIS-HEP, GSoC, GDOC and 
unfunded contributors


• More experienced people should help mentoring


• More clarity after May 20.

10



Implement in clang an extension to allow statements on the global scope



Extending C++

• Extend the clang parser when building 
incremental TU


• Figure out which is a good place in the 
grammar to extend. (Mind CUDA, attribute 
parsing vs non-attributes)


• Model the new statements in the 
PartialTranslationUnit (Mind static init and 
performance)

12


