
Wrap-Up:
Improve automatic differentiation of 

object-oriented paradigms using Clad

Petro Zarytskyi
Google Summer of Code

Julius-Maximilians-Universität, Germany
Mentors: Vassil Vassilev, David Lange



Recap: what didn’t work

Original code Code differentiated by Clad 



Recap: what didn’t work

Original code Code differentiated by Clad 

The argument is not fully copyable!



What doesn’t work

The same goes with all non-copyable types:

● std::initializer_list
● std::unique_ptr, std::shared_ptr, etc.
● Other STL and user-defined types.

Note: Methods of such classes follow the same logic as plain functions.



Implemented solution

Original code Code differentiated by Clad 

We introduced clad::restore_tracker (previously, clad::smart_tape) 
that can automatically store and restore multiple objects at the 
same time



Implemented solution

Original code Code differentiated by Clad 



Implemented solution

● Already on Clad’s master
● Well-tested with nested calls and local variables
● Fixed an example from ROOT
● The system is attached to TBR analysis to avoid unnecessary uses



The second originally planned approach

Original code Code differentiated by Clad 

It was meant to cover “nice” cases when the argument can be 
stored easily outside of the original function.



The second originally planned approach

● We decided that this feature is not currently needed as there are more 
relevant OOP-related issues

● Although we are halfway there as the approach relies on TBR analysis 
and most of the necessary improvements there were made



So what was done instead?



So what was done instead?
47 merged Pull Requests



Summary:
Improvements in TBR analysis

● Support for pointers: new operators, address and dereference operators (& and *), 
pointers are no longer always to-be-recorded.

● Support for nested function calls: information about variables is propagated between 
functions

● Improved OOP support leading to 17% less produced code and up to 44% speedup in 
OOP-specialized tests in Clad.

● Support for local declarations: in the reverse mode, they also require tapes and can be 
optimized by TBR

● Major code refactoring for better readability/maintainability (fixed some bugs automatically)



Summary:
Improvements in OOP

● Automatic differentiation of constructors: general constructors are now supported (before, 
only linear), base-class constructors, delegating constructors, move-constructors – 
constructor-exprs are supported on the same level as function call-exprs

● Improved reverse_forw functionality: fixed bugs and crashes, improved produced code, 
improved pointer support

● Diagnostics for custom derivatives: hints for the user if the custom derivative is written 
incorrectly and cannot be used by Clad.

● Other bugs/features: added support for std::pair, std::unique_ptr, std::shared_ptr, 
std::weak_ptr, etc.

● Related code maintenance: mostly moved to static scheduling of derivatives, etc.



Thank you!
Questions?


