Wrap-Up:
Improve automatic differentiation of
object-oriented paradigms using Clad

Petro Zarytskyi
Google Summer of Code
Julius-Maximilians-Universitat, Germany
Mentors: Vassil Vassilev, David Lange

COMPILER

C|R

RESEARCH

Recap: what didn’t work @

Original code Code differentiated by Clad
double f(doublex x, double y) { void f_grad(...) {
Q(X, Y); / ' drithla)

return z;

_pullback(...);

COMPILER

C|R

RESEARCH

Recap: what didn’t work @

Original code Code differentiated by Clad
void f_grad(...) {

double f(doublex x, double y) {
Q(X, Y); // al(doublex double)

return z;

The argument is not fully copyable! g_pullback(...);

COMPILER

C|R

RESEARCH

What doesn’t work

The same goes with all non-copyable types:
e std:initializer_list

e std:unique_ptr, std::shared_ptr, etc.
e Other STL and user-defined types.

Note: Methods of such classes follow the same logic as plain functions.

COMPILER

C|R

RESEARCH

Implemented solution @

We introduced clad::restore_tracker (previously, clad::smart_tape)
that can automatically store and restore multiple objects at the
same time

Original code Code differentiated by Clad

double f(doublex x, double y) { void f_grad(...) {
(x Y: 7/ qldoublex, double) clad::restore_tracker _tracker® = {};
9% Yar /7 GNOOUD L, g_reverse_forw(x, y, _d_x, *_d_y, _tracker0);

return z;

_tracker@.restore();
g_pullback(...);

COMPILER

C|R

RESEARCH

Implemented solution @

Original code

Code differentiated by Clad
double g(doublex x, double y) {

double g_reverse_forw(.
for (int 1 =

, clad::restore_tracker & tracker@) {
; : unsigned long _t@ = QUL;

@; 1 < 9; ++1) { int _di= 0;
x[i] *= y; for (int i = @; i < 9;
3

++1) {
_t0++;
return x[3];

1

_tracker@.store(x[1i]);
x[i] %= y;

1
i

return x[3];

COMPILER

C|R
Implemented solution

e Already on Clad’s master

o Well-tested with nested calls and local variables

o Fixed an example from ROOT

o The system is attached to TBR analysis to avoid unnecessary uses

COMPILER

C|R

RESEARCH

The second originally planned approach

It was meant to cover “nice” cases when the argument can be
stored easily outside of the original function.

Original code Code differentiated by Clad

double f(doublex x, double y) { void f_grad(...) {
g(x, y); // g(doublex, double) double _t0 = x[3];
gix, y);
return z;

x[3] = _

The second originally planned approach o

o We decided that this feature is not currently needed as there are more
relevant OOP-related issues

o Although we are halfway there as the approach relies on TBR analysis
and most of the necessary improvements there were made

cin <>
So what was done instead?

COMPILER

o what was done instead?
47 merged Pull Requests

i Move VarData element access to VarData::operator(]
Do not generate empty pulbacks Support not differentiating w.r.t. const references in reverse mode 10 Don't creste dynamic arrays for static arrays declarations Inside loops

Rework SetisReq and overlay and combine them into a singke function
P Simplify assignments with independent RHSLHS I Add sfides of Potro Zarytskyi (GSoC
Add a test for #1349 to avoid regression plify assige opr i ytskyi (
Midterm)
Move ProfileiD generation 1o singke palrt n TBR
RAefactor nested TBR

Add a test for #1346 to avoid regression 1d Add primitive ics for type

Switch from Visit to Traverse functions in TBR
Find used parameter values in nested TBR

Move argument differentiation into a separate function Add support for functions that modity their parameters

Perform lookups of reference variables in TBR:-ow
Ondy use the reverse mode in error estimation

Add support for std:-shared_ptr and stel::weak_pte and improve

Change m_DelayedCalls to std::deque differsntiation of object parans Simplify getExpriarsata in TBR and sdd s test

Improve support for pointers in TBR

Use Stmt* as identifiers in TBR Instead of SourceLocation Support std-pak constructors natively . 1 Update call argumant storing in the roverse mode
Consider unions differentiable,

Enable static custom derivatives lookups for topmost diffrequests Fix broken master aftor merging #1438 and #1437 at the same time Move some tests from UserDefinedTypes.C to Canstructar.C
tiai support far nasted calts in TBR

., - 5 = Schedule rse_forw functions staticai 3 ad Scheduie simpla partial derivatives staticaly
Schedule first order derivatives for hessians statically Anaiyze local DeciStmtin TBR SN e b e 4

. . Don't averride VisitUnaryOperator in RMFPY Update the SmallPT ray tracer demo
Remove exceptions in shouldBeRecorded Ensbie TBR in the tests of the produced code

Update information about Petro Zarytsky g Call Up
Account for implicit exprs In hasUnusedReturmivake
Enable TBR in pointer arithmetics

1 Don't unnacassarily move loop condition 1o the loop body
Find used parameter values in nested TBR

i Don't store unused return values of reverse_forw
vgvassile

Enable static derivative scheduling in the forward mode by default

1d Fix the numeration in STLCustomDerivatives.C

Update a test of a break-stmt to avoid regression in #1123

COMPILER

C|R

RESEARCH

Summary: @

Improvements in TBR analysis

e Support for pointers: new operators, address and dereference operators (& and *),
pointers are no longer always to-be-recorded.

e Support for nested function calls: information about variables is propagated between
functions

e Improved OOP support leading to 17% less produced code and up to 44% speedup in
OOP-specialized tests in Clad.

e Support for local declarations: in the reverse mode, they also require tapes and can be
optimized by TBR

e Major code refactoring for better readability/maintainability (fixed some bugs automatically)

COMPILER

C|R

RESEARCH

Summary: @

Improvements in OOP

Automatic differentiation of constructors: general constructors are now supported (before,
only linear), base-class constructors, delegating constructors, move-constructors —
constructor-exprs are supported on the same level as function call-exprs

Improved reverse_forw functionality: fixed bugs and crashes, improved produced code,
improved pointer support

Diagnostics for custom derivatives: hints for the user if the custom derivative is written
incorrectly and cannot be used by Clad.

Other bugs/features: added support for std::pair, std::unique_ptr, std::shared_ptr,
std::weak_ptr, etc.

Related code maintenance: mostly moved to static scheduling of derivatives, etc.

Thank you!
Questions?

