
Shared Memory Based 
JITLink Memory Manager

Student: Anubhab Ghosh

Mentors: Vassil Vassilev, Lang Hames, Stefan Gränitz



JITLink

● JITLink is a Just-In-Time linker.
○ It takes multiple object code units and links them together.
○ It constructs the result directly in memory.
○ The resulting code is usually immediately run.

● It uses a LinkGraph as memory representation.
○ It consists of nodes like Adressable, Block, Symbol.
○ Relocations are represented by edges.
○ Sections consists of symbols and blocks.

● It can work with two different processes.
○ An executor process that is running the resultant code.
○ A controller process that performs the linking and controls the executor.
○ The communication happens through Executor Process Control, an RPC scheme.



Memory management

● Memory allocation is performed using the 
JITLinkMemoryManager interface.

● It has 3 steps
○ Allocate

■ Reserves address space
○ Finalize

■ Copies link result from working 
memory to executor

■ Runs initialisation actions
○ Deallocate

■ Runs deinitialization actions
■ Deallocate memory

● Intialization and deinitialization actions are just 
functions that will be executed in the context of 
the target process.

When multiple processes are involved, this is implemented 
with the EPCGenericJITLinkMemoryManager and 
SimpleExecutorMemoryManager.



The Executor Process side

● Implemented using a bootstrap service.
● 3 primary functions: allocate, finalize and deallocate
● Deallocation actions are also transferred during finalization.



The Controller Process

The controller process side is implemented in 
EPCGenericJITLinkMemoryManager.

It mainly consists of RPC calls to the methods 
of SimpleExecutorMemoryManager.



EPC implementation under the hood



The plan

● A MemoryMapper interface with implementations based on
○ Shared memory

■ When both executor and controller process share same physical memory
○ Regular memory allocation APIs

■ When the resultant code is executed in the same process
■ Useful for unit tests

○ EPC
■ Required when the executor and controller process run with different physical memory
■ Resultant code is transferred to the executor process over the EPC channel

● A JITLinkMemoryManager implementation that can use any MemoryMapper
○ It will allocate large chunks of memory using MemoryMapper and divide into smaller chunks
○ Better support for small code model by keeping everything close in memory



MemoryMapper 
Interface

● Reserve
○ Reserves executor address space
○ Creates shared memory or regular allocation

● Prepare
○ Provides pointer to working memory for use by the 

linker
○ Could be already mapped shared memory or just 

regular temporary memory to be copied
● Initialize

○ Transfers memory contents to executor and runs 
initialization actions

○ No-op for in-process or shared memory
● Deinitialize

○ Runs deinitialization actions
● Release

○ Release executor address space



Current Progress

● MemoryMapper interface in review
● InProcessMemoryMapper implementation using sys::Memory APIs in 

review
● SharedMemoryMapper needs to be adapted to new MemoryMapper 

interface design (Currently working)



Thank you


