
PAVLO SVIRIN, 2024-05-15

ROOT: superbuilds

• PhD: National Technical University of Ukraine (2014), Computer Science

• Academic work experience:

• CERN (2014-2017): project associate at ALICE experiment

• Brookhaven National Laboratory (2017-2019)

• CERN (2019-2021): project associate at ATLAS experiment

• Barcelona Supercomputing Center (2021-2023)

• Speaks Ukrainian, English, Spanish, Chinese, Russian. Some knowledge
about Sanksrit, Middle Egyptian, Crimean Tatar.

• Able to write using Cyrillic, Latin, Devanaghari, Georgian, Chinese Simplified
alphabets, some Arabic and Hiragana too.

About me

ROOT

• ROOT is a framework for data processing developed at CERN

• Used in high-energy physics and astrophysics

• Provides lots of features for:

• data processing

• data saving and data access

• publish results

• using interactive sessions using Cling C++ or building customs
applications

• Website: https://root.cern/

• ROOT needs lots of time to compile and user not all of
the modules

• Around 130 internal modules with inter-
dependencies

• Practical use case: instead of downloading more then
1GB of full ROOT sources or pre configured ROOT
binaries, you can decide to start with minimal set
~150 Mb and expand with any customization you
want.

ROOT: simplification of compilation

• The idea is to specify which components have to be compiled during
configuration time

• Auto-detection of dependencies among the modules

• done by parsing of CMakeLists files in search of
ROOT_STANDARD_LIBRARY definitions and their dependencies

• Dependency tracking can be implemented using simple graph
database like https://github.com/dpapathanasiou/simple-graph

• Absolutely minimal set of module to be compiled to run ROOT:

• Core, IO, CLING interpreter, MathCore

• other modules compiled if specified

ROOT: simplification of compilation

https://github.com/dpapathanasiou/simple-graph
https://github.com/dpapathanasiou/simple-graph

• Goal:

• to allow to skip compilation of the components which are
already built and installed to target directory

• to easily add new components to distributed modulemap
infrastructure

• in case of admin-only rights to write into ROOT’s installation
directory: to install new components together with their
modulemap files to different directory and then on ROOT’s
start combine all of the necessary modulemaps into one

ROOT: partial builds

• Modulemap in ROOT is a file which defines available components in the
installation directory, their headers and shared libraries

• Currently include/module.modulemap a file of several hundreds lines

• We managed to split it into multiple files:

• each file defines one component

• main modulemap file just includes all of these files

• Benefits:

• easy to add new components

• easy to identify which components are already installed

Distributed modulemap files

• A CMake built-in module which allows to decrease the level of coupling
among the components in a project

• Can be used as a simple package manager

• https://cmake.org/cmake/help/v3.28/module/ExternalProject.html

CMake extenal projects

ExternalProject_Add(secretsauce

 URL http://intranet.somecompany.com/artifacts/sauce-2.7.tgz

 https://www.somecompany.com/downloads/sauce-2.7.zip

 URL_HASH MD5=d41d8cd98f00b204e9800998ecf8427e

 CONFIGURE_COMMAND ""

 BUILD_COMMAND ${MAKE_EXE} sauce

 DEPENDS tomato onion garlic vinegar

)

https://cmake.org/cmake/help/v3.28/module/ExternalProject.html
https://cmake.org/cmake/help/v3.28/module/ExternalProject.html

• Cmake call will look like the following:

cmake ../root-6.28.06/ -Dxrootd=0 -Dssl=0 -Dtmva=0 -Dwebgui=0 -Dxproofd=0 -Dgraf=0 -Dexecutables=1
-Dnet=1 -Ddb=1 -Dmath=1 -Dbindings=1 -Dhtml=0 -Dgui=0 -DCMAKE_INSTALL_PREFIX=/mnt/sdb1/opt/
root-modules -Dxml=0 -Dhttp=0 -Dtree=0 -Dproof=0 -Druntime_cxxmodules=1

cmake -DCMAKE_EXTERNAL_PROJECTS=“interpreter;core;io;math” ..

ROOT: menu-based compilation

• The idea is to develop a
similar to Linux’s menuconfig
TUI tool which will
automatically produce a
cmake call from selections

• ncurses

• dialog

• bash-simple-curses

• External projects defined

• Global configuration step is split into two parts:

• step on which global variables are defined, then saved to a file

• step on which external projects load global variables and continue with
their own configuration and compilation

• Currently we were able to:

• configure and build “interpreter” component which has no
dependencies on other ROOT components

• dependencies for other components defined and build processes start
in correct order

Current status

ROOT: menu-based compilation

dialog --output-separator ";" \

—backtitle "ROOT configutation" \

—title "Please select the components " \

—checklist "Choose from following" 0 0 0 \

interpreter "Interpreter" on \

core "Core" on \

io”IO" on \

math "Math" on \

net "Net" off

>> cat /tmp/c | sed 's/^;//' | xargs -I % echo cmake -DCMAKE_EXTERNAL_PROJECTS=‘"%"' ..

cmake -DCMAKE_EXTERNAL_PROJECTS=“interpreter;core;io;math” ..

• Implement cmake modules which discover location of
precompiled components in the destination directory, otherwise,
looking for them in the root of the source code folder

• update variables in the CMakeLists which reflect the
dependencies among external projects

Closest steps

