ROOT: superbuilds

PAVLO SVIRIN, 2024-05-15

About me

« PhD: National Technical University of Ukraine (2014), Computer Science
« Academic work experience:
 CERN (2014-2017): project associate at ALICE experiment
 Brookhaven National Laboratory (2017-2019)
« CERN (2019-2021): project associate at ATLAS experiment
« Barcelona Supercomputing Center (2021-2023)

o Speaks Ukrainian, English, Spanish, Chinese, Russian. Some knowledge
about Sanksrit, Middle Egyptian, Crimean Tatar.

« Able to write using Cyrillic, Latin, Devanaghari, Georgian, Chinese Simplified
alphabets, some Arabic and Hiragana too.

ROOT

« ROOT is a framework for data processing developed at CERN
e Used in high-energy physics and astrophysics
* Provides lots of features for:

e data processing

e data saving and data access

e publish results

e using interactive sessions using Cling C++ or building customs
applications

* Website: https://root.cern/

ROOT: simplification of compilation

e ROOT needs lots of time to compile and user not all of
the modules

e Around 130 internal modules with inter-
dependencies

* Practical use case: instead of downloading more then
1GB of full ROOT sources or pre configured ROOT
binaries, you can decide to start with minimal set
~150 Mb and expand with any customization you

want.

ROOT: simplification of compilation

 The idea is to specify which components have to be compiled during
configuration time

Auto-detection of dependencies among the modules

e done by parsing of CMakeLists files in search of
ROOT_STANDARD_LIBRARY definitions and their dependencies

* Dependency tracking can be implemented using simple graph
database like https://github.com/dpapathanasiou/simple-graph

* Absolutely minimal set of module to be compiled to run ROOT:
* Core, IO, CLING interpreter, MathCore

» other modules compiled if specified

https://github.com/dpapathanasiou/simple-graph
https://github.com/dpapathanasiou/simple-graph

ROOT: partial builds

e Goal:

* to allow to skip compilation of the components which are
already built and installed to target directory

* to easily add new components to distributed modulemap
infrastructure

* in case of admin-only rights to write into ROOT’s installation
directory: to install new components together with their
modulemap files to different directory and then on ROOT'’s
start combine all of the necessary modulemaps into one

Distributed modulemap files

Modulemap in ROOT is a file which defines available components in the
installation directory, their headers and shared libraries

Currently include/module.modulemap a file of several hundreds lines
We managed to split it into multiple files:

e each file defines one component

 main modulemap file just includes all of these files

Benefits:

e easy to add new components

e easy to identify which components are already installed

CMake extenal projects

* A CMake built-in module which allows to decrease the level of coupling
among the components in a project

 Can be used as a simple package manager

» https://cmake.org/cmake/help/v3.28/module/ExternalProject.html

ExternalProject_Add(secretsauce

URL http://intranet.somecompany.com/artifacts/sauce-2.7.tgz
https://www.somecompany.com/downloads/sauce-2.7.zip
URL_HASH MD5=d41d8cd98f00b204e9800998ecf8427¢e

CONFIGURE_COMMAND **
BUILD_COMMAND ${MAKE_EXE} sauce
DEPENDS tomato onion garlic vinegar

https://cmake.org/cmake/help/v3.28/module/ExternalProject.html
https://cmake.org/cmake/help/v3.28/module/ExternalProject.html

ROOT: menu-based compilation

* Cmake call will look like the following:

cmake ../root-6.28.06/ -Dxrootd=0 -Dssl=0 -Dtmva=0 -Dwebgui=0 -Dxproofd=0 -Dgraf=0 -Dexecutables=1
-Dnet=1 -Ddb=1 -Dmath=1 -Dbindings=1 -Dhtm|=0 -Dgui=0 -DCMAKE_INSTALL_PREFIX=/mnt/sdb1/opt/
root-modules -Dxml=0 -Dhttp=0 -Dtree=0 -Dproof=0 -Druntime_cxxmodules=1

cmake -DCMAKE_EXTERNAL_PROJECTS="interpreter;core;io;math” ..

Terminal

e The ideais to develop a
similar to Linux’s menuconfig
TUI tool which will

.config -

Arrow keys navigate the menu.
Highlighted letters are hotkeys.
features.
[] excluded <M> module < > module capable

Linux/x86 4.4.2 Kernel Configuration

Linux/x86 4.4.2 Kernel Configuration

<Enter> selects submenus ---> (or empty submenus ----).
Pressing <Y> includes, <N> excludes, <M> modularizes
Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in

automatically produce a
cmake call from selections

* NCUrses

e dialog

[*¥] 64-bit kernel
General setup --->
[*] Enable loadable module support --->
[*] Enable the block layer --->
Processor type and features --->
Power management and ACPI options --->
Bus options (PCI etc.) --->
Executable file formats / Emulations --->
Networking support --->
Device Drivers --->
Firmware Drivers --->
File systems --->
Kernel hacking --->
Security options --->
Cryptographic API ---
Virtualization --->
Library routines --->

< Exit > < Help > < Save > < Load >

* bash-simple-curses

Current status

e External projects defined
* Global configuration step is split into two parts:
» step on which global variables are defined, then saved to a file

e step on which external projects load global variables and continue with
their own configuration and compilation

e Currently we were able to:

» configure and build “interpreter” component which has no
dependencies on other ROOT components

* dependencies for other components defined and build processes start
In correct order

ROOT: menu-based compilation

dialog --output-separator ;" \
—backtitle "ROOT configutation" \
—title "Please select the components " \

Please select the components

H] . n h f followi
—checklist "Choose from following" 00 0\ Chaose from folfowing
- ’ y [| wEersrete
interpreter "Interpreter” on \ nle= Core
*] 10
core "Core" on\ [*] math Math
. 9 " [] net Net
i0”10" on \
math "Math" on \
net "Net" off

>> cat /tmp/c | sed 's/A;//' | xargs -1 % echo cmake -DCMAKE_EXTERNAL_PROJECTS="%"" ..

cmake -DCMAKE_EXTERNAL_PROJECTS="interpreter;core;io;math” ..

Closest steps

* Implement cmake modules which discover location of
precompiled components in the destination directory, otherwise,
looking for them in the root of the source code folder

* update variables in the CMakeLists which reflect the
dependencies among external projects

