
Support usage of Thrust API
in Clad

Author: Abdelrhman Elrawy
Mentors: Vassil Vassilev, Alexander Penev

Project Context

Clad: A source-transformation automatic differentiation (AD) library in Clang.

Thrust: NVIDIA's powerful GPU-parallel algorithms and data structures library.

The Challenge:
● This project aims to enhance Clad by adding support for NVIDIA's Thrust library.
● By enabling differentiation of Thrust's GPU-parallel algorithms, Clad users will gain the

ability to automatically generate gradients for CUDA-accelerated code.
● This work will bridge the gap between high-performance GPU computing and AD,

potentially accelerating gradient-based optimization tasks by orders of magnitude.

Midterm Progress Summary

Successfully implemented custom derivatives for thrust::reduce:

● This includes support for multiple binary operations like plus, maximum, minimum, and multiplies.
● Special care was taken to handle edge cases, such as the presence of zeros in the input for the multiplies

operation.

Added support for thrust::inner_product:

● Pullbacks for both the 4-argument and 6-argument versions of the function have been implemented.
● This supports various binary operator combinations, including (plus, multiplies), (plus, plus), and

(plus, minus).

Ongoing Work:

● Adding support for another reduction operations to further expand Clad's capabilities.

Detailed Progress: thrust::reduce

Pull Request #1472: Add custom derivative for
thrust::reduce

Key Implementations:

● A new header, ThrustDerivatives.h, was created
to contain the custom derivative logic.

● The reduce_pullback function was implemented to
manage the gradient calculation for various reduction
operations.

● Here is a snippet for the thrust::plus<T>
operation:

Detailed Progress: thrust::inner_product

Pull Request #1480: Added support for
thrust::inner_product

Key Implementations:

● I extended ThrustDerivatives.h with
inner_product_pullback.

● This new function supports both the standard inner
product and versions with custom binary operations.

● The following is the gradient calculation for the
standard inner product:

Challenges & Solutions

1. Mismatched Function Signatures
○ Problem: Silent failures occurred as Clad didn't initially warn about incorrect pullback function

signatures.
○ Solution: Manually debugged to find the issue.

2. GPU Memory Errors
○ Problem: Tracing memory access violations within the CUDA/Thrust environment was complex.
○ Solution: Used compute-sanitizer and careful GPU pointer management to resolve memory

errors.

3. Mathematical Edge Cases
○ Problem: The derivative for thrust::reduce with multiplication was incorrect when the input

contained zeros.
○ Solution: Implemented logic to count zeros and correctly handle the gradient for single and multiple

zero-value inputs.

Future Goals

● Core Implementation:
○ Finalize support for other complex reduction algorithms.
○ Implement custom derivatives for thrust::transform.
○ Address more complex algorithms like thrust::transform_reduce and

thrust::inclusive_scan.

● Testing Use case:
○ Develop practical, real-world examples, such as in neural network training.

● Documentation & Finalization:
○ Create thorough documentation for the new Thrust support in Clad.
○ Prepare the final project report and presentation

Thanks!

