
IMPLEMENTING DEBUGGING
SUPPORT FOR XEUS-CPP

GOOGLE SUMMER OF CODE 25’

Author: Abhinav Kumar
Mentors: Anutosh Bhat, Vipul Cariappa, Aaron Jomy, Vassil Vassilev

ME
ABOUT

Academic Background
4 year undergraduate student at Indian Institute of
Technology(IIT), Indore.

th

Major in Computer Science & Engineering

Interests
Low level programming and C++.
Binary Exploitation.
System Design and Software Development.
Recently got into AI/ML.

WHAT IS XEUS-CPP?

Xeus-Cpp is a Jupyter kernel that
enables interactive C++
programming within the Jupyter
environment.
It is built on the Xeus library—a C++
implementation of the Jupyter
kernel protocol.
Powered by the Clang-Repl
interpreter from the CppInterOp
library, Xeus-Cpp allows you to write,
execute in real-time, much like you
would with Python.

DEBUGGING SUPPORT
FOR XEUS-CPP

Can’t have debugger just like in xeus-
python or ipykernel.

Why?
Because, Python is an interpreted
language while C++ is a compiled
language.

Can’t directly use LLDB(Debugger for C++)
because LLDB attaches to C++ compiled
code.

So how can we debug Just-In-Time(JIT)
Compiled Code??

JIT-ed CODE
DEBUGGING

Using CppInterOp library and
enabling JIT loader in LLDB will
resolve symbols and debug
the JIT-compiled code.

Xeus-cpp uses this structure under the hood.

JUPYTER-LAB’S ENVIRONMENT?
HOW CAN WE BRING THIS DEBUGGING IN

Jupyter uses Debugger adapter
protocol(DAP)

LLDB-DAP implements the Debug
Adapter Protocol (DAP) for debugging
C++ with LLDB in IDEs like VS Code and
JupyterLab.

Using LLDB-DAP with VS Code

Extracting CppInterOp process into a
standalone forked process from xeus-
cpp kernel.
Attaching lldb-dap/lldb to this
CppInterOp process.
Experimenting with kernel, lldb-dap,
lldb and trying out different
approaches.

OVERVIEW
IMPLEMENTATION

PHASE 1

JupyterLab intergration with LLDB-DAP.
Implementing breakpoint feature.
Implementing inspect variable feature.
Writing unittests for above features.

PHASE 2

Implementing step-in feature and
handling the multi-codeblock issue.
Implementing step-out feature.
Writing unittests for above features.

OVERVIEW
IMPLEMENTATION

PHASE 3

Overall tests for debugger.
Refactoring, code quality review and
documentation.

PHASE 4

GOALS IMPACT
Enable interactive debugging for C++
in Jupyter notebooks with
breakpoints, variable inspection, and
step-through execution

Solving the unique technical
challenge of debugging JIT compiled
code

Establish a foundation for advanced
debugging features

This will be the first comprehensive
debugging solution for C++ in Jupyter
environments

Makes C++ more accessible to
students and researchers who prefer
interactive development

Enables better C++ education in
academic settings where Jupyter is
popular

THANK YOU

