GOOGLE SUMMER OF CODE 25’

IMPLEMENTING DEBUGGING
SUPPORT FOR XEUS-CPP

D oEncrc @

Author: Abhinav Kumar
Mentors: Anutosh Bhat, Vipul Cariappad, Aaron Jomy, Vassil Vassilev

ABOUT
ME

Academic Background
e 4™ year undergraduate student at Indian Institute of
Technology(lIT), Indore.
e Major in Computer Science & Engineering

Interests
e Low level programming and C++.
e Binary Exploitation.
e System Design and Software Development.
e Recently got into Al/ML.

WHAT IS XEUS-CPP?

e Xeus-Cpp is a Jupyter kernel that

enables interactive C++

programming within the Jupyter S — S — "

env”—onment. g + ¥ OO0 » m C » Code v Notebook (7 C+23 O =
e |t is built on the Xeus library—a C++ e —

implementation of the Jupyter o

kernel protocol.
e Powered by the Clang-Repl R

interpreter from the CppinterOp 1 o T

library, Xeus-Cpp allows you to write,

execute in real-time, much like you

would with Python.

35 Settings Help

int square(int n) {
return n * n;

Can't have debugger just like in xeus-
python or ipykernel.

Why?
e Because, Python is an interpreted
language while C++ is a compiled

DEBUGGING SUPPORT language.
FOR XEUS-CPP Can't directly use LLDB(Debugger for C++)

because LLDB attaches to C++ compiled
code.

So how can we debug Just-In-Time(JIT)
Compiled Code??

DEBUGGING
JIT-ed CODE

Using CpplnterOp library and
enabling JIT loader in LLDB will
resolve symbols and debug
the JIT-compiled code.

) ./test
(1ldb} target create "./test"

Current executable set to '/Users/abhinavkumar/Desktop/Coding/Testing/test’ (armé64).

settings set plugin.jit-loader.gdb.enable on
b) breakpoint set ——name f1
Breakpoint 1: no locations (pending).

WARNING: Unable to resolve breakpoint to any actual locations.

-

Process 51881 launched: '/Users/abhinavkumar/Desktop/Coding/Testing/test' (armé64)

1 location added to breakpoint 1

In codeblock 1

Process 51881 stopped

* thread #1, queue = 'con ' in-thread', stop reason

frame #0: @x@@@ﬂ@@@l@@S?cﬁﬁB JIT(@X10355c218) f1() at ii;ﬁih”'1.”-:

Xeus-cpp uses this structure under the hood.

#include “"clang/Interpreter/CppinterOp.h”
#include <iostream=

void run_code(std::string code) {
Cpp::Declare(code.c_str());

}

int main(int arac, char #argvi[]) {
Cpp::Createlnterpreter({"-gdwarft-4", "-08"});
std::vector<Cpp: :TCppScope_t> Decls;
std::string code = R"{

#include <iostream=

void f1() {

std::cout << "in f1 function" =< std::endl;
std::cout << "In codeblock 1" << std::endl;
int a = 188;

int b = 1688:
"3
run_code(code) ;
code = R" |
F1():
run_code(code);
return @8:

}

HOW CAN WE BRING THIS DEBUGGING IN
JUPYTER-LAB’S ENVIRONMENT?

Jupyter uses Debugger adapter
protocol(DAP)

LLDB-DAP implements the Debug
Adapter Protocol (DAP) for debugging
C++ with LLDB in IDEs like VS Code and
JupyterLab.

Using LLDB-DAP with VS Code

IMPLEMENTATION
OVERVIEW

PHASE 1 PHASE 2

e Extracting CpplnterOp process into a
standalone forked process from xeus-
cpp kernel.

e Attaching lldb-dap/Iidb to this
CpplnterOp process.

e Experimenting with kernel, lldb-dap,
lldb and trying out different
approaches.

JupyterLab intergration with LLDB-DAP.
Implementing breakpoint feature.
Implementing inspect variable feature.

Writing unittests for above features.

IMPLEMENTATION
OVERVIEW

PHASE 3 PHASE 4

e Implementing step-in feature and
handling the multi-codeblock issue.
e Implementing step-out feature.

e Overall tests for debugger.
e Refactoring, code quality review and
documentation.

e Writing unittests for above features.

GOALS IMPACT

e Enable interactive debugging for C++ e This will be the first comprehensive
In Jupyter notebooks with debugging solution for C++ in Jupyter
breakpoints, variable inspection, and environments
step-through execution

e Makes C++ more accessible to

e Solving the unique technical students and researchers who prefer
challenge of debugging JIT compiled iInteractive development
code
e Enables better C++ education in
e Establish a foundation for advanced academic settings where Jupyter is
debugging features popular

