
Write JITLink support for new
format/architecture Current Progress

Mentors: Vassil Vassilev, Lang Hames, Stefan Gränitz
Student: Sunho Kim

August 10th 2022

1



JITLink

● Do the same job of LLD but just in time
○ Receives object file (“.o file”) and link in memory to an executable form

● Benefit of using object file format
○ Can use the same compilation pipeline with AOT llvm world
○ Not a lot of overhead; no need to store to file system

● Designed to support full features of AOT compiled object files
○ Supports static initializers, thread local storage, and native linking models without hacks – 

LLVM users don’t have to turn on untested, slow compilation modes in order to use JIT.
○ Have a generic abstraction of linker objects called LinkGraph – which makes it very easy to 

transform the inputted object file and make new allocations etc.

2



My project

● Problem: lack of platform/architecture support in JITLink to make it a viable 
replacement for old JIT infrastructures.

3

Linux (ELF) Mac (MachO) Windows (COFF)

ARM64 X O X

X86_64 O O X

RISCV O X X



My project

● Problem: lack of platform/architecture support in JITLink to make it a viable 
replacement for old JIT infrastructures.

4

Linux (ELF) Mac (MachO) Windows (COFF)

ARM64 O O X

X86_64 O O O

RISCV O X X



My project

● Write JITLink backends for
○ ELF/AARCH64 (arm64 gnu linux)
○ COFF/X86_64 (x86_64 msvc windows)

● Deliverables
○ JIT support of the native linking model on ELF/AARCH64 and COFF/X86_64 with no hacks.
○ Bump up the support tier of linux aarch64 target in Julia – fixing random hangs and crashes.
○ Clean and reliable support of msvc c++ target in clang-repl

5



Progress on ELF/AARCH64

● Fully completed.
● Thread local variables working fully by supporting the thread descriptor model 

– the natvie TLS model in aarch64 linux.
● Submitted a pull request in Julia to enable JITLink 

○ Passes all julia core testcases including complicated backtrace test case which requires 
correct registration of EH frames.

○ Fixes the crash in a particular test case that have made linux aarch64 3-tier in julia support list.
○ Turned out to fix a code corruption issue that happens under a heavy JIT compilation usage.

● Didn’t take a lot of time as a lot of groundworks were already done in the past 
when adding ELF/X86_64 support.

6

https://github.com/JuliaLang/julia/pull/45859


Progress on COFF/X86_64

● Almost completed – currently polishing and refactoring the code.
● Built COFF support code from scratch.
● Capable of statically linking the windows C runtime (UCRT) and microsoft 

STL library.
● Support for various COFF specific features: ImageBase relocation, COMDAT 

symbols, weak external aliases, linker directive, and dllimports.
● Full support of SEH exception handling that clang requires to support c++ 

exceptions.

7



COFF/x86_64 demo

● clang-repl targeting x86_64-windows-msvc
○ Hello, world
○ SEH exception (try, catch)
○ Using microsoft STL library
○ Windows message box 
○ C++ std::cout lazy load
○ Using real world static library without any modification

8



Remaining

● Land COFF patches that enables jitlink in LLJIT/clang-repl without hacks
● Work on lazy lexer to enable multiline statements in clang-repl.

9


