
Improve automatic 
differentiation of object-oriented 

paradigms using Clad
Petro Zarytskyi

Google Summer of Code
Julius-Maximilians-Universität, Germany
Mentors: Vassil Vassilev, David Lange



Introduction: Automatic Differentiation
Automatic differentiation is a method of differentiation of functions expressed as procedures. It 
involves breaking up the function into simple operations and applying chain rule to each one of 
them. This can be done both ways: from the input to the output (forward mode) and vice versa 

(reverse mode). This project focuses on the second approach which is more efficient for 
computing gradients. In reverse mode, we need two passes: a forward pass to store the 

intermediate values of all the variables and a backward pass to compute derivatives.



Examples: what didn’t work

Original code Code differentiated by Clad 



Examples: what didn’t work

Original code Code differentiated by Clad 

C-arrays are not copyable!



What doesn’t work

The same goes with all non-copyable types:

● std::initializer_list
● std::unique_ptr, std::shared_ptr, etc.
● Other STL and user-defined types.

Note: Methods of such classes follow the same logic as plain functions.



Approach 2: nice partial solution

Original code Code differentiated by Clad 

Let’s say we have analysed g and we know that it only affects the 
third element of x



Approach 2: nice partial solution

Original code Code differentiated by Clad 

Let’s say we have analysed g and we know that it only affects the 
third element of x

We decided to focus on Approach 1 for now!



Approach 1: general solution

Original code Code differentiated by Clad 

We introduce a new type of non-copyable types that can 
automatically store and restore multiple objects at the same time



Approach 1: general solution

Original code Code differentiated by Clad 



Approach 1: Progress

Progress so far:

● Implemented clad::smart_tape, enabled its usage in reverse_forw functions.
● Took different approaches to minimize the usage of clad::smart_tape when unnecessary, 

including the analysis of function’s signature, avoiding storing local variables, run-time 
analysis. 

● Tested in different scenarios, including nested revere_forw functions, member functions, local 
variables, etc.

● Did a private pass over the implementation with Vassil, re-implemented clad::smart_tape as 
an interval-based map.

● Improvements in TBR: internal refactorings, improved support for arrays and pointers, added 
support for undefined VarData, optimized the visitation process, and almost implemented 
support for pointer reassignments.



Other progress

In total, 18 merged PRs and 2 open

● Improved reverse_forw mode: made the scheduling static-only, removed a lot of unused 
statements, made the naming consistent, and improved the support for pointers.

● Enabled support for all (non-linear) constructor_pullback generation. 
● Opened a PR that enables support for constructors of derived classes and std::forward, and 

also enables native support for the constructors of std::pair constructors.
● Fixed a regression in the JIT-ing time (#1371) in Clad by introducing static scheduling of partial 

pullbacks.
● Enabled static scheduling of derivatives in the forward mode and reverse_forw functions. 

Made handling parameters differentiability consistent and centralized.
● Fixed the SmallPT ray-tracer demo in Clad. Updated it to showcase the reverse mode instead 

of the forward mode.

https://github.com/vgvassilev/clad/issues/1371


Thank you!


