Vectorized forward mode AD in clad

By Vaibhav Thakkar
Forward mode AD

\[f(x, m, z) = x + m + z \]

\[\frac{\partial f}{\partial x} \]

inputs

\(x' = 1 \)
\(m' = 0 \)
\(z' = 0 \)

\[f' = x' + m' + z' \]
Forward mode AD

\[f(x, \square, z) = x + \square + z \]

\[\frac{\partial f}{\partial \square} \]

\[x' = 0 \]

\[\square' = 1 \]

\[z' = 0 \]

\[f' = x' + \square' + z' \]
Forward mode AD

\[f(x, \square, z) = x + \square + z \]

\[\frac{\partial f}{\partial z} \]

\[x' = 0 \]

\[\square' = 0 \]

\[z' = 1 \]

\[f'(z) = x' + \square' + z' \]
Vectorized Forward mode AD

\[f(x, \square, z) = x + \square + z \]

\[\nabla f = [\partial f/\partial x, \partial f/\partial \square, \partial f/\partial z] \]

\[\nabla x = [1, 0, 0] \]
\[\nabla \square = [0, 1, 0] \]
\[\nabla z = [0, 0, 1] \]
Problem

For computing gradient of a function with n-dimensional input - forward mode requires n forward passes, 1 for each input.

Can we instead compute the complete gradient in one pass?

Proposed Solution

Instead of accumulating a single scalar value of derivative with respect to a particular node - maintain a gradient vector at each node.

Initialised by a 1-hot vector for each input node.
Progress till now
Updated clad interface

declare f(double x, double y, double z) {
 return 1.0*x + 2.0*y + 3.0*z;
}

int main() {
 // Call clad to generate the derivative of f wrt x and z.
 auto f_dx = clad::differentiate<clad::opts::vector_mode>(f, "x,z");

 // Execute the generated derivative function.
 double dx = 0, dy = 0, dz = 0;
 f_dx.execute(/*x=*/ 3, /*y=*/ 4, /*z=*/ 5, &dx, &dz);
}

void f_dvec_a_2(double x, double y, double z, double * _d x, double * _d z) {
 clad::array<double> _d_vec_x = {1., 0.};
 clad::array<double> _d_vec_y = {0., 0.};
 clad::array<double> _d_vec_z = {0., 1.};
 {
 * _d_x = _d_vec_return[0];
 * _d_z = _d_vec_return[1];
 return;
 }
}
Differentiating array parameters

- Each arr[i] is a separate independent variable which needs to maintain a vector - this means we need a matrix to store _d_vector_arr.
- Can be multiple array parameters, so multiple matrix instances.
Major Features added

- Support for vectorized forward mode for functions containing any of the following:
 - Arithmetic operations
 - Variable assignments
 - Control flow (if statements / loops)

- Restructured ForwardModeVisitor classes to separate out the logic from basic forward mode AD.

- Improved the interface of `clad::differentiate` to take bit-masked options and allowing user to specify multiple input params for differentiation.

- Fixed all LLVM assertions errors when using vector mode
 - Required generating an overload function
Major Features added

- Adding support for differentiation array parameters
 - Required adding a clad::matrix class along with benchmarks.

- Documentation and demo examples for vector mode.

- Some utilities like adding clang-format and clang-tidy in GitHub checks to ensure code quality.
Next Goal
Improving efficiency

- Current implementation is for vectorization at algorithmic level.
 - To achieve performance speedups - we need to perform operations in parallel at hardware level by instructing the compiler that it is safe to vectorize these operations.
Future Goals
Missing features

- Adding support for differentiating function with call expressions.
 - `std::exp, std::sin, ... custom_defined_fn (x, y, z)`
- Object oriented feature support - differentiating methods and functors.
- Improving compute and memory efficiency by activity analysis (enzyme also does this).
- Reverse vector mode.
 - General reverse mode AD - traverse from single output to all inputs.
 - Vectorized reverse mode AD - traverse from multiple output to all inputs.
Questions ?