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Introduction

C++ modules now has been adopted in ROOT by default. It greatly improved the runtime performance by reducing 
unnecessarily parsing a lot of huge header files. But it has its limitation.

When a user types something in the repl, ROOT will incrementally query where the identifier user input is located, or which 
module contains the identifier. Say we have input something like:

root [0]: edm::X

So when we have input edm, ROOT will try to load all modules that contain the identifier edm. But because edm is a 
NameSpaceDecl and if it contains many modules, the performance will suffer. After all, all we want is just X!
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How does modules work with ROOT?

The look up logic in ROOT:
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What is GlobalModuleIndex

Obviously that GlobalModuleIndex is the key part of our implementation. So what exactly 
it is?

In short, a hashmap, that’s all…

current interface: 

https://github.com/root-project/root/blob/master/interpreter/llvm/src/tools/clang/include/cla
ng/Serialization/GlobalModuleIndex.h
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More details

We store the {identidier name ⇔ Module info} mapping in the 
llvm::OnDiskIterableChainedHashTable, which can hold the info persistently

https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Support/OnDiskHa
shTable.h
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Disclamer

● New to C++ modules
● Still discovering the best solution
● Feel free to correct my mistakes
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Implementation Plan

The fundamental problem is that we have lost the type info when we store the 
corresponding mapping, so what about just keep it?

● Solution 1: Can we just stop the lookup when we found it is a 
NameSpaceDecl?

● Solution 2: {DeclName ⇔ Module info} => {Decl ⇔ Module info}

● Solution 3: {DeclName ⇔ Module info} => {(DeclName, DeclKind) ⇔ Module 
info}
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Q&A

9



Thanks!
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