
Optimize ROOT use of modules for large codebases

Jun Zhang GSoC 2022
Mentors: Vassil Vassilev, David Lange, Alexander Penev

1



Outline

● Introduction
● How modules work with ROOT
● A brief introduction to GlobalModuleIndex
● Implementation Plan
● Q&A

2



Introduction

C++ modules now has been adopted in ROOT by default. It greatly improved the runtime performance by reducing 
unnecessarily parsing a lot of huge header files. But it has its limitation.

When a user types something in the repl, ROOT will incrementally query where the identifier user input is located, or which 
module contains the identifier. Say we have input something like:

root [0]: edm::X

So when we have input edm, ROOT will try to load all modules that contain the identifier edm. But because edm is a 
NameSpaceDecl and if it contains many modules, the performance will suffer. After all, all we want is just X!

3



How does modules work with ROOT?

The look up logic in ROOT:

4



What is GlobalModuleIndex

Obviously that GlobalModuleIndex is the key part of our implementation. So what exactly 
it is?

In short, a hashmap, that’s all…

current interface: 

https://github.com/root-project/root/blob/master/interpreter/llvm/src/tools/clang/include/cla
ng/Serialization/GlobalModuleIndex.h

5

https://github.com/root-project/root/blob/master/interpreter/llvm/src/tools/clang/include/clang/Serialization/GlobalModuleIndex.h
https://github.com/root-project/root/blob/master/interpreter/llvm/src/tools/clang/include/clang/Serialization/GlobalModuleIndex.h


More details

We store the {identidier name ⇔ Module info} mapping in the 
llvm::OnDiskIterableChainedHashTable, which can hold the info persistently

https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Support/OnDiskHa
shTable.h

6

https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Support/OnDiskHashTable.h
https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Support/OnDiskHashTable.h


Disclamer

● New to C++ modules
● Still discovering the best solution
● Feel free to correct my mistakes

7



Implementation Plan

The fundamental problem is that we have lost the type info when we store the 
corresponding mapping, so what about just keep it?

● Solution 1: Can we just stop the lookup when we found it is a 
NameSpaceDecl?

● Solution 2: {DeclName ⇔ Module info} => {Decl ⇔ Module info}

● Solution 3: {DeclName ⇔ Module info} => {(DeclName, DeclKind) ⇔ Module 
info}

8



Q&A

9



Thanks!

10


