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Mapper JITLink Memory Manager

e It takes a MemoryMapper and uses it for all low level operations.

e It reserves a large chunk of memory on first allocate().
o By default multiple of TMiB on Windows and 1GiB everywhere else.

e It uses a slab allocator to allocate memory.
o llvm::IntervalMap is to keep track of free memory regions.
m Itis possible to reuse freed memory.
m It can perform automatic coalescing of memory regions.
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Current Progress

e MemoryMapper interface

o InProcessMemoryMapper using sys::Memory APls
o SharedMemoryMapper using POSIX and win32

e MapperJITLinkMemoryManager implementation

o It can use one of the above memory mappers
o It has a slab allocator.

e llvm-jitlink tool integration
o InProcessMemoryMapper is enabled by default now
o Shared memory can be enabled with --use-shared-memory switch when running with
--oop-executor=or --oop-executor-connect=
o It can run projects that normally run with llvm-jitlink. The C-Ray raytracer and Python
interpreter seems to work
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C-Ray Benchmark
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EPC Implementation
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Shared Memory Implementation
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Current and Future Work

e Investigate the performance of shared memory
o | tried using madvise(MADV_WILLNEED).
m It did not improve performance.
m However page fault and CPU usage pattern changed.
o Test performance on Windows
m  Windows has different overcommit policies.

e atexit() problem
o Processes can register functions to be called at process termination with Unix atexit() API.
o If code generated by llvm-jitlink registers a function, it is called when terminating llvm-jitlink or
llvm-jitlink-executor process.
o But those registered functions are long gone. Their memory has been unmapped.
o Crashes with SIGSEGV.



Current and Future Work

ClangREPL integration
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It uses a SelfExecutorProcessControl along with InProcessMemoryManager.

It is easy to replace that with SimpleRemoteEPC that controls a fork()-ed process.
However, LLJIT uses LLJIT::PlatformSupport instead for memory actions.

The default implementation GenericLLVMIRPlatformSupport assumes everything is
in-process.
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