
Shared Memory Based 
JITLink Memory Manager

Student: Anubhab Ghosh

Mentors: Vassil Vassilev, Lang Hames, Stefan Gränitz



Mapper JITLink Memory Manager

● It takes a MemoryMapper and uses it for all low level operations.
● It reserves a large chunk of memory on first allocate().

○ By default multiple of 1MiB on Windows and 1GiB everywhere else.
● It uses a slab allocator to allocate memory.

○ llvm::IntervalMap is to keep track of free memory regions.
■ It is possible to reuse freed memory.
■ It can perform automatic coalescing of memory regions.

2



3



Current Progress

● MemoryMapper interface
○ InProcessMemoryMapper using sys::Memory APIs
○ SharedMemoryMapper using POSIX and win32

● MapperJITLinkMemoryManager implementation
○ It can use one of the above memory mappers
○ It has a slab allocator.

● llvm-jitlink tool integration
○ InProcessMemoryMapper is enabled by default now
○ Shared memory can be enabled with --use-shared-memory switch when running with 

--oop-executor= or --oop-executor-connect=
○ It can run projects that normally run with llvm-jitlink. The C-Ray raytracer and Python 

interpreter seems to work

4



CPython Benchmark

5



C-Ray Benchmark

6



EPC Implementation

7



Shared Memory Implementation

8



Current and Future Work

● Investigate the performance of shared memory
○ I tried using madvise(MADV_WILLNEED).

■ It did not improve performance.
■ However page fault and CPU usage pattern changed.

○ Test performance on Windows
■ Windows has different overcommit policies.

● atexit() problem
○ Processes can register functions to be called at process termination with Unix atexit() API.
○ If code generated by llvm-jitlink registers a function, it is called when terminating llvm-jitlink or 

llvm-jitlink-executor process.
○ But those registered functions are long gone. Their memory has been unmapped.
○ Crashes with SIGSEGV.

9



Current and Future Work

● ClangREPL integration
○ It uses a SelfExecutorProcessControl along with InProcessMemoryManager.
○ It is easy to replace that with SimpleRemoteEPC that controls a fork()-ed process.
○ However, LLJIT uses LLJIT::PlatformSupport instead for memory actions.
○ The default implementation GenericLLVMIRPlatformSupport assumes everything is 

in-process.

10



Thank you

11


