Shared Memory Based
JITLiInk Memory Manager

Student: Anubhab Ghosh

Mentors: Vassil Vassilev, Lang Hames, Stefan Granitz

Mapper JITLink Memory Manager

e It takes a MemoryMapper and uses it for all low level operations.

e It reserves a large chunk of memory on first allocate().
o By default multiple of TMiB on Windows and 1GiB everywhere else.

e It uses a slab allocator to allocate memory.
o llvm::IntervalMap is to keep track of free memory regions.
m Itis possible to reuse freed memory.
m It can perform automatic coalescing of memory regions.

Controller Executor
JITLink Mapper JLMM Shared Memory Mapper kernel Executor Shared Memory Mapper Service
: allocate(1MiB) ' : : :
| | reserve(1GiB) o3 | |
| | "l [EPC Call =
| I [T shfn_open() =]
: : : 2 Pmap0 :
| | y i Shared Némory Filename H
|
[[| shmjogeng » |
| I I mrpap() i I
| l Reservation I | |
| InFlightalloc ™ ! | |
allocate() : : :
l InFlightAlloc | | | |
: | | | |
Write to shared memory I | | |
I finalize() | : : :
| i initialize() > | |
| | | |EPC Call el
I | | ¢ mprotect() "
: : : : Run finalization actions |
| FinalizedAlloc I : : :
| deallocate() | | |
| 1 deinitialize() >| | |
| | | |EPC Call s
| | | | =l
| | | | | Run deinitialization actions |
: l release() k: I i
Ll
| I L murmap() »/ I
| | | |EPC Call |
| | I I mjunmap() |
| | | o
| I | | Shutdown()

Current Progress

e MemoryMapper interface

o InProcessMemoryMapper using sys::Memory APls
o SharedMemoryMapper using POSIX and win32

e MapperJITLinkMemoryManager implementation

o It can use one of the above memory mappers
o It has a slab allocator.

e llvm-jitlink tool integration
o InProcessMemoryMapper is enabled by default now
o Shared memory can be enabled with --use-shared-memory switch when running with
--oop-executor=or --oop-executor-connect=
o It can run projects that normally run with llvm-jitlink. The C-Ray raytracer and Python
interpreter seems to work

CPython Benchmark

Time in seconds

B Before
User time
System time
Total CPU time

Wall time

0.0 0.1 0.2

B After

0.3

0.4

0.5

C-Ray Benchmark

Time in seconds

B Before [After
User time
System time
Total CPU time

Wall time

0.00 0.05 0.10 0.15 0.20

EPC Implementation

File Filter Plots Tools Help

Pointer: |317.680256

< e o= o> ++ | - Marker B A,B Delta:

31746301 317.583145 317703279

coo DI F 001111 | D

cPU

cPU2

cPU3

CPU &

CPUS

cPU7

Shared Memory Implementation

File Filter Plots Tools Help

Pointer: |490.915332

+ - m Marker B AB Delta:

490.927682
r

w00 el [[BT 11 [I L] U] LTl SRR] TR TN Y

491.088319 491.248955
T d

e LIt ANEENE NN I T T O (| T T N
| || [HIIEE | O A T 1 TN
oo [|| IR L HNEEE 1L NN A O ' (Il '

e LI eyt I I I I I AT R s R RE VI
cos WL S]] AL U | || | | I 1R 3 TN 17T, 1T N T O
o [LLLINI] Wrirrl m INEEEE L I (Il AR LY | OOMOREE (OO0 0 OO L ORPDOA 00000 Y

o JPP g ALK LU L0 (ot 0L L LI Al

Current and Future Work

e Investigate the performance of shared memory
o | tried using madvise(MADV_WILLNEED).
m It did not improve performance.
m However page fault and CPU usage pattern changed.
o Test performance on Windows
m Windows has different overcommit policies.

e atexit() problem
o Processes can register functions to be called at process termination with Unix atexit() API.
o If code generated by llvm-jitlink registers a function, it is called when terminating llvm-jitlink or
llvm-jitlink-executor process.
o But those registered functions are long gone. Their memory has been unmapped.
o Crashes with SIGSEGV.

Current and Future Work

ClangREPL integration

(@)

(@)
(@)
(@)

It uses a SelfExecutorProcessControl along with InProcessMemoryManager.

It is easy to replace that with SimpleRemoteEPC that controls a fork()-ed process.
However, LLJIT uses LLJIT::PlatformSupport instead for memory actions.

The default implementation GenericLLVMIRPlatformSupport assumes everything is
in-process.

10

Thank you

