
Pavlo Svirin, 6/11/2024

Modular Builds for
ROOT
Final presentation for the Google Summer of
Code 2024 project

1

• ROOT is a very big software (~730 MB of source code, 5.5
mln lines of code)

• Around 130 components with inter-dependencies
(ROOT_STANDARD_LIBRARY_PACKAGEs)

• ROOT needs lots of time to compile and lots of resources

• User not all of the libraries or utilities which are compiled

• some components can be omitted by “-D…”

• Practical use case: users might need only a fragment of
ROOT’s components (e.g. libCling+libCore or libMathCore)

ROOT: modular builds

2

• Goal:

• to allow to select the components to be built

• to allow to identify the components which are already built and installed to
target directory and offer to skip their compilation

• to easily add new components to existing installation

• in case of admin-only rights to write into ROOT’s installation directory: to install
new components together with their modulemap files to different directory and
then on ROOT’s start combine all of the necessary modulemaps into one

• G S o C ’ 2 4 p r o p o s a l : h t t p s : / / d o c s . g o o g l e . c o m / d o c u m e n t / d /
1UN5jMcm2w83KbnObxsukPdMRzAcnQ0HOKfVPXmizmbE/edit?usp=sharing

• First presentation for this project: https://indico.cern.ch/event/1430315/
(24/06/2024)

ROOT: modular builds

3

• The idea is to specify which components have to be compiled
during configuration time

• We managed to get an absolutely minimal set of components to
be compiled to run ROOT:

• Core, IO, CLING interpreter, MathCore, some basic binaries
like root.exe and rootcling

• Other components can be compiled if specified (currently we
take into account only top-level like net, graph, etc.)

• they are specified as “external projects” and can be build
separately

ROOT: modular builds

4

• Modulemap in ROOT is a file which defines
available components in the installation
directory, their headers and shared libraries

• Currently include/module.modulemap a file
of several hundreds lines

• We managed to split it into multiple files:

• each file defines one component

• main modulemap file just includes all of
these files

• Benefits:

• easy to add new components

• easy to identify which components are
already installed

• Pull request ready: #16211

Distributed modulemap files

…..

module "XMLParser" {

 requires cplusplus

 module "TDOMParser.h" { header "TDOMParser.h" export * }

 module "TSAXParser.h" { header "TSAXParser.h" export * }

 module "TXMLAttr.h" { header "TXMLAttr.h" export * }

 module "TXMLDocument.h" { header "TXMLDocument.h" export * }

 module "TXMLNode.h" { header "TXMLNode.h" export * }

 module "TXMLParser.h" { header "TXMLParser.h" export * }

 link "libXMLParser.so"

 export *

}

extern module Net “Net.modulemap"

extern module Graf2D “Graf2D.modulemap”

…..

module "Net" {

 requires cplusplus

 module "NetErrors.h" { header "NetErrors.h" export * }

 module "RRemoteProtocol.h" { header "RRemoteProtocol.h" export * }

 module "TApplicationRemote.h" { header "TApplicationRemote.h" export
* }

 module "TApplicationServer.h" { header "TApplicationServer.h" export * }

 module "TFileStager.h" { header "TFileStager.h" export * }

 module "TFTP.h" { header "TFTP.h" export * }

 module "TGrid.h" { header "TGrid.h" export * }

….

 link "libNet.so"

 export *

}

$ROOT_BASE/include/ROOT.modulemap :

$ROOT_BASE/include/ROOT.modulemap.d/Net.modulemap :

5

>> cmake -DROOT_ENABLE_PROJECTS=“net;graf2d” \

-DROOT_BASE=“/usr” -DCMAKE_INSTALL_PREFIX=/opt/root3
\

 -DROOT_SRC_DIR=$HOME/devel/root …..

>> cmake -DROOT_ENABLE_PROJECT_SET=“[All | Essentials]” \

-DCMAKE_INSTALL_PREFIX=/opt/root3 …

>> make all install

>> make package

CMake/make example calls

6

• In on of the ROOT_BASE_DIR: already compiled libraries

• if exists(${ROOT_BASE_DIR}/lib/lib${COMPONENT}.so)

• then create a pseudo-target for a found library

• In ROOT_SRC_DIR directory as an external project which is to be compiled:

• enabled as an external project and a dependency of the project which is processed

• dependencies tree in ROOT source dir can be build using cmake’s graphviz feature

• dependencies in the ROOT’s compiled libraries can be tracked using mechanisms in
CMake

• Built-ins or external libraries:

• in progress

Component search

7

• Installation process copies into destination directory necessary
files and puts modulemap include line into ROOT.modulemap file

• Packaging to RPM and installation/uninstallation for external
projects works good

• Packaging to RPM and installation for essential part: in progress

• Other formats can be considered

Packaging and installation for components

8

• Several presentations have been done for the ROOT team regarding the project

• All of the components of the projects implemented

• https://github.com/pavlo-svirin/root/tree/superbuilds

• A CMake-only solution, around 800 lines of code changed

• Pull requests to ROOT’s main repository:

• distributed modulemaps: #16211

• superbuilds: #16751

• Current actions in progress:

• testing

• study how multiple base directories can be combined in order to create a viable ROOT
installation which includes components installed by superuser and by regular users

Current status and closest tasks

9

• Implement relevant test for the ROOT’s CI/CD system

• Documentation

• Implement execution of ROOT with distributed base directories

• Gather and analyze other proposals from ROOT users and
developers, which are relevant to this project

h t t p s : / / d o c s . g o o g l e . c o m / d o c u m e n t / d / 1 E Q -
z5upcEF1sYejKXQlljLD146iVaZom_ZN5NKfDorE/edit?usp=sharing

Closest plans

10

