Modular Builds for
ROOT

Final presentation for the Google Summer of
Code 2024 project

Pavlo Svirin, 6/11/2024

ROOT: modular builds

ROOT is a very big software (~730 MB of source code, 5.5
min lines of code)

* Around 130 components with inter-dependencies
(ROOT_STANDARD_LIBRARY_PACKAGES)

ROOT needs lots of time to compile and lots of resources

User not all of the libraries or utilities which are compiled

e some components can be omitted by “-D...”

Practical use case: users might need only a fragment of
ROOT’s components (e.g. libCling+libCore or libMathCore)

2

ROOT: modular builds

e Goal:

to allow to select the components to be built

to allow to identify the components which are already built and installed to
target directory and offer to skip their compilation

to easily add new components to existing installation
in case of admin-only rights to write into ROOT’s installation directory: to install

new components together with their modulemap files to different directory and
then on ROOT’s start combine all of the necessary modulemaps into one

» GSoC’24 proposal: https://docs.google.com/document/d/
1UNSMcm2w83KbnObxsukPdMRzAcnQOHOKfVPXmizmbE/edit?usp=sharing

* First presentation for this project: https://indico.cern.ch/event/1430315/
(24/06/2024)

ROOT: modular builds

 The idea is to specify which components have to be compiled
during configuration time

 We managed to get an absolutely minimal set of components to
be compiled to run ROOT:

e Core, |0, CLING interpreter, MathCore, some basic binaries
like root.exe and rootcling

 Other components can be compiled if specified (currently we
take into account only top-level like net, graph, etc.)

 they are specified as “external projects” and can be build
separately

Distributed modulemap files

Modulemap in ROOT is a file which defines
available components in the installation
directory, their headers and shared libraries

Currently include/module.modulemap a file
of several hundreds lines

We managed to split it into multiple files:

» each file defines one component

$ROOT_BASE/include/ROOT.modulemap :

module "XMLParser" {
requires cplusplus
module "TDOMParser.h" { header "TDOMParser.h" export * }
module "TSAXParser.h" { header "TSAXParser.h" export * }
module "TXMLAttr.n" { header "TXMLAttr.n" export * }
module "TXMLDocument.h" { header "TXMLDocument.h" export * }
module "TXMLNode.h" { header "TXMLNode.h" export * }
module "TXMLParser.h" { header "TXMLParser.h" export * }
link "libXMLParser.so"
export *

}

extern module Net “Net.modulemap"”
extern module Graf2D “Graf2D.modulemap”

* main mOdUIemap file JUSt includes all of SROOT_BASE/include/ROOT.modulemap.d/Net.modulemap :

these files
Benefits:
e easy to add new components

e easy to identify which components are
already installed

Pull request ready: #16211

module "Net" {
requires cplusplus
module "NetErrors.h" { header "NetErrors.h" export * }
module "RRemoteProtocol.h" { header "RRemoteProtocol.h" export * }
module "TApplicationRemote.h" { header "TApplicationRemote.h" export

module "TApplicationServer.h" { header "TApplicationServer.h" export * }
module "TFileStager.h" { header "TFileStager.h" export * }

module "TFTP.h" { header "TFTP.h" export * }

module "TGrid.h" { header "TGrid.h" export * }

link "libNet.so"
export *

CMake/make example calls

>> cmake \

-DROOT_BASE="/usr” -DCMAKE_INSTALL_PREFIX=/opt/root3
\

-DROOT_SRC_DIR=$HOME/devel/root

>> cmake \
-DCMAKE_INSTALL_PREFIX=/opt/root3

>> make all install

>> make package

Component search

* In on of the ROOT_BASE_DIR: already compiled libraries
o if exists(${ROOT_BASE_DIRY/lib/lib${COMPONENT}.s0)
* then create a pseudo-target for a found library
* In ROOT_SRC_DIR directory as an external project which is to be compiled:
* enabled as an external project and a dependency of the project which is processed
» dependencies tree in ROOT source dir can be build using cmake’s graphviz feature

» dependencies in the ROOT’s compiled libraries can be tracked using mechanisms in
CMake

e Built-ins or external libraries:

* in progress

Packaging and installation for components

Installation process copies into destination directory necessary
files and puts modulemap include line into ROOT.modulemap file

Packaging to RPM and installation/uninstallation for external
projects works good

Packaging to RPM and installation for essential part: in progress

Other formats can be considered

Current status and closest tasks

Several presentations have been done for the ROOT team regarding the project

All of the components of the projects implemented

 https://github.com/pavlo-svirin/root/tree/superbuilds

A CMake-only solution, around 800 lines of code changed

Pull requests to ROOT’s main repository:
 distributed modulemaps: #16211

e superbuilds: #16751

Current actions in progress:
 testing

» study how multiple base directories can be combined in order to create a viable ROOT
installation which includes components installed by superuser and by regular users

9

Closest plans

Implement relevant test for the ROOT’s CI/CD system

Documentation

Implement execution of ROOT with distributed base directories

Gather and analyze other proposals from ROOT users and
developers, which are relevant to this project

https://docs.google.com/document/d/1TEQ-
zo5upcEF1sYe]KXQIlljLD146iVaZom_ZNSNKIfDorE/edit?usp=sharing

10

