
Enhancing LLM Training Efficiency with Clad
for Backpropagation

Rohan Timmaraju, June 2025
Compiler Research Group

Introduction

Enhancing LLM Training Efficiency with Clad | Introduction

The Challenge of LLM Training
• Large Language Models (LLMs) like GPT, Claude, Llama, etc. are groundbreaking, but

incredibly computationally expensive to train.
• Python frameworks (PyTorch, TensorFlow, etc.) dominate:
‣ Pros: Flexibility, rich ecosystem, ease of use.
‣ Cons: Performance overhead (interpreter, dynamic computation graphs), memory

usage
• Need for efficient solutions, especially to integrate with HPC/C++ environments.

Rohan Timmaraju, June 2025 3

Enhancing LLM Training Efficiency with Clad | Introduction

Core Idea: Compiler-level AD for Backpropagation
• Neural networks use reverse mode automatic differentiation to compute the gradients

of model parameters wrt. to a loss function – this is called backpropagation.
‣ These gradients are then used to update model parameters during the training loop

• Idea: construct the neural network in C++ so that we can use clad::gradient to
statically generate the backpropagation code at compile time.

• Goal: allow for compiler optimizations across the entire computation graph and training
loop to improve performance𝑊1 𝑊2 𝐿(𝑦, 𝑦)

𝜕𝐿𝜕𝑦𝜕𝐿𝜕𝑊2
Input vector 𝒙 Parameters 𝒉 Output 𝑦 Loss 𝐿

Rohan Timmaraju, June 2025 4

Technical Overview

Enhancing LLM Training Efficiency with Clad | Technical Overview

cladtorch: A Custom C++ Tensor Library
• Neural networks are composed of large sequences of tensor operations (matrix

multiplication, convolution, activation functions, etc.)
• We need a C++ tensor library to express these operations in a way that integrates with

Clad to differentiate them.
• Design Goals:
‣ Familiar API for PyTorch users
‣ Transparency to clad – should be able to differentiate all operations/kernels
‣ Efficiency and performance (minimal dynamic execution overhead)

• Key Question/Challenge: Does it need to be a special case in Clad? Or can we improve
the existing clad::gradient implementation enough to support it?

Rohan Timmaraju, June 2025 6

Enhancing LLM Training Efficiency with Clad | Technical Overview

Main Workflow
using cladtorch::Tensor;
struct NeuralNetwork {
 Layer1 l1; Layer2 l2;
 Tensor forward(const Tensor &input) const {
 softmax(l1.forward(input) + l2.forward(input));
 }
};
float nn_loss(const NeuralNetwork &nn, Tensor &input, Tensor &output) {
 return cross_entropy_loss(nn.forward(input), output);
}
for ([input, output] : training_data) {
 NeuralNetwork nn, d_nn = {0}; :/ gradients are accumulated in d_nn
 auto grad = clad::gradient(nn_loss, "0");
 grad.execute(nn, input, output, &d_nn);
 nn.update_weights(d_nn, learning_rate);
}

Rohan Timmaraju, June 2025 7

Enhancing LLM Training Efficiency with Clad | Technical Overview

Project Timeline
• Phase 1: Implement cladtorch tensor library
‣ Develop an efficient C++ tensor library.
‣ Integrate with Clad for automatic differentiation

– Either by extending Clad’s existing functionality or by implementing custom logic
for Tensor operations

• Phase 2: Implement a Machine Learning library on top of cladtorch
‣ Implement common neural network layers (e.g., linear, convolutional, activation

functions), loss functions (e.g., cross-entropy, MSE), and operations.
‣ Implement key LLM layers (e.g., attention, transformer blocks)

Input
Multi-
Head

Attention

Add &
Norm

Feed
Forward

Add &
Norm Softmax

Rohan Timmaraju, June 2025 8

Enhancing LLM Training Efficiency with Clad | Technical Overview

Project Timeline (cont.)
• Phase 3: Implement the GPT-2 LLM architecture
‣ Implement the GPT-2 architecture using the cladtorch library for training
‣ Train the model on a small dataset to validate functionality
‣ Ensure correctness of backpropagation and gradient accumulation

• Phase 4: Benchmarking, Optimization, and Extension
‣ Benchmark the performance of cladtorch and the ML library against manual

implementations, PyTorch, and other frameworks.
‣ Optimize performance based on results, potentially integrating OpenMP etc.
‣ Potentially extend to other architectures (e.g. Llama, Mistral) and tasks (e.g. fine-

tuning, inference).
‣ Extend ML library with additional features, e.g. for Physics-based ML tasks, solver-in-

the-loop training, etc.

Rohan Timmaraju, June 2025 9

Summary

Enhancing LLM Training Efficiency with Clad | Summary

Goals and Impact
Goals:
• Develop a C++ tensor library that integrates with Clad for efficient differentiation.
• Implement an ML library on top of cladtorch for training neural networks.
• C++ GPT-2 architecture implementation via Clad.
• Performance benchmarks (speed, memory) and detailed documentation.

Impact:
• Enable efficient LLM training in C++ & HPC environments.
• Provide a foundation for future research/efforts in compiler-based ML optimization.
• Insights for Clad’s usability in ML and LLM training.

Rohan Timmaraju, June 2025 11

Thank You

	The Challenge of LLM Training
	Core Idea: Compiler-level AD for Backpropagation
	cladtorch: A Custom C++ Tensor Library
	Main Workflow
	Project Timeline
	Project Timeline (cont.)
	Goals and Impact

