
Improve automatic 
differentiation of object-oriented 

paradigms using Clad
Petro Zarytskyi

Google Summer of Code
Julius-Maximilians-Universität, Germany
Mentors: Vassil Vassilev, David Lange



Introduction: Automatic Differentiation
Automatic differentiation is a method of differentiation of functions expressed as procedures. It 
involves breaking up the function into simple operations and applying chain rule to each one of 
them. This can be done both ways: from the input to the output (forward mode) and vice versa 

(reverse mode). This project focuses on the second approach which is more efficient for 
computing gradients. In reverse mode, we need two passes: a forward pass to store the 

intermediate values of all the variables and a backward pass to compute derivatives.



Examples: what works

Original code Code differentiated by Clad 



Examples: what works

Original code Code differentiated by Clad 



Examples: what doesn’t work

Original code Code differentiated by Clad 



Examples: what doesn’t work

Original code Code differentiated by Clad 

C-arrays are not copyable!



What doesn’t work

The same goes with all non-copyable types:

● std::initializer_list
● std::unique_ptr, std::shared_ptr, etc.
● Other STL and user-defined types.

Note: Methods of such classes follow the same logic as plain functions.



Approach 1: general solution

Original code Code differentiated by Clad 

We introduce a new type of non-copyable types that can 
automatically store and restore multiple objects at the same time



Approach 1: general solution

Original code Code differentiated by Clad 



Approach 1: general solution

Original code Code differentiated by Clad 

Not very efficient / readable but simple and works



Approach 2: nice partial solution

Original code Code differentiated by Clad 

Let’s say we have analysed g and we know that it only affects the 
third element of x



Approach 2: nice partial solution

Good news: 
This type of analysis already exists in Clad and it’s called TBR 
(To-Be-Recorded)

Bad news: 
It’s quite unreliable, especially with arrays/structures and nested functions



Summary

Approach 1: 

● General
● Straightforward implementation
● A little ugly
● Can still benefit from TBR to 

avoid unnecessary stores

Approach 2: 

● Partial
● Sophisticated implementation
● More readable/efficient code
● Relies on improvements to TBR

Ideally, we should implement both and have the first one as fallback behavior. 
The exact order of implementation is up to a discussion.

Successfully implementing this system will not only enable differentiation of 
non-copyable structures but also make storing all structures more efficient.



Thank you!


