
Add support for differentiating with
respect to user-defined types.

Progress Update
Parth Arora
Mentors: Vassil Vassilev, David Lange

Topics to be discussed

● Current Progress
● Design Changes
● Current Challenges
● Next Goals

Current Progress

● Added support for differentiating switch statements in the reverse mode.

● Added support for differentiating scalar types with respect to basic
user-defined types using the forward mode differentiation.

● Added support for differentiating scalar types with respect to basic
user-defined types using the reverse mode differentiation.

Switch Statement support in the reverse mode.

Differentiating scalar type wrt user-defined types in the forward mode

Differentiating scalar types wrt to user-defined types in the reverse mode

Switch Statement
support

Switch Statement support in the reverse mode

● Basic idea used is, if we can keep track of which switch case was selected
and which break statement was hit in the forward pass of the switch
statement, then, in the reverse pass, we can execute derived statements of
the switch statement body that were executed in the forward pass.

● The information of which switch case was selected and which break
statement was hit is further used by an auxiliary switch statement to jump the
execution to the correct point in the reverse pass.

 If (cond == 0)
 break;

A case label is associated with each
break statement. The case label is used
to jump the execution to the correct
point if this break statement was hit in
the forward pass

Benchmarks

Probability of
break statement
per case: 80%

Compiler: GNU g++
Optimization: -O3

Benchmarks

Probability of
break
statement per
case: 30%

Compiler: GNU g++
Optimization: -O3

Benchmarks

● Runtime of Tapenade’s implementation generally increases with number of
case statements, but is not as much affected by number of break
statements.

● Runtime of Clad’s implementation increases with number of break
statements, but is not as much affected by number of case statements.

Derived Types

Derived Types

● What should be type of a variable
that stores derivative of a double
variable with respect to a
ComplexNumber variable?

● What should be the type of a variable that stores derivative of a
ComplexNumber variable with respect to a ComplexNumber variable?

Derived Types

How to interpret these derived types?

Derived Types

● What should be the type of a variable
that stores derivative of a double
variable with respect to a
ComplexNumberPair variable?

● What should be the type of a variable that stores derivative of a
ComplexNumber variable with respect to a ComplexNumberPair variable?

Derived Types

Reusing the derived
types infrastructure
instead of creating all
the nested fields
everytime

How to interpret these derived types?

Derived Types

● Derived types are used to store derivative of a variable of type T1 with
respect to a variable of type T2.

● Derived types can be easily and efficiently generated algorithmically.
● Derived types contains data members of other derived types. This

infrastructure reuse makes derived types easier to create, use and
understand.

Derived Types

● Users need to forward-declare each derived type that is required by clad.

● Clad will automatically generate body of the derived types.
● Users will directly use variables of derived types to access the derivatives.

Thus, derived types need to be visible to the users.

Differentiating scalar types with respect to
user-defined types in the forward mode

● If we are differentiating a function in the forward mode with respect to a
variable of user-defined type containing n member variables, then it is
equivalent to differentiating the function n times in the forward mode. One
direct advantage here is that computationally expensive operations are
computed only once instead on n times.

Differentiating a double variable wrt a ComplexNumber variable.

Differentiating a double variable wrt a ComplexNumber variable.

Differentiating scalar types with respect to
user-defined types in the forward mode

● For each derived type, clad creates functions dAdd, dSub, dMulitply and
dDivide. These functions contains rules how to produce resultant derivative
when original variables are added, subtracted, multiplied and divide
respectively.

● These arithmetic derived functions are used by other derived types arithmetic
function as well. For example, dAdd function for ComplexNumberPair type
internally used dAdd function for ComplexNumber type.

InitialiseSeeds Function

● For derived types such as, __clad_T_wrt_T, where T is any user-defined type,
clad also creates a member function associated with these derived types,
InitialiseSeeds.

In the forward mode,
This function will get differentiated as

Differentiating scalar types with respect to
user-defined types in the reverse mode.

● Differentiating a function with respect to a variable of a user-defined type
that contain n members in the reverse mode is effectively same as
differentiating the function with respect to a variable of a scalar type.

Current limitations of differentiating scalar types
with respect to user-defined types

● User-defined types should only contain scalar fields. Thus, nested
aggregate types are not supported.

● Operator overloads and member functions are not supported

Design Changes

Major Design Changes

● Now clad::differentiate, returns a void pointer. Users have to use static_cast
to cast the result to correct type before using it.

● Now clad::gradient, takes derived arguments of type clad::array_ref<void>
instead of clad::array_ref<FnReturnType>.

Major Design changes

Major Design Changes

● Using advance metaprogramming techniques we can avoid returning a
pointer and instead return by value in clad::differentiate, thus maintaining the
current design.

Major design changes

● Metaprogramming technique will have added restriction that users will
only be able to specify independent parameter using parameter index.

● No way to specify differentiate with respect to “arr[3]” using the
metaprogramming technique.

Current
Challenges

Current Challenges

● Design a more sophisticated syntax for naming derived types. Current
syntax cannot handle namespaces, nested class and template notation.

● For namespaces, we can use:

Current challenges

● We need to fix a scalar type in which derivatives should be computed.

● long and long double can be used interchangeably, but
__clad_double_wrt_ComplexNumber and
__clad_long_double_wrt_ComplexNumber cannot be used interchangeably.

Next Goals

Next goals

● Refactor all the code and prepare a PR.

● Add support for differentiating calls to overloaded operators and member
functions.

● Add support for differentiating with respect to user-defined types
containing data members of user-defined types (nested aggregate types).

